
- Open Vulnerability and Assessment Language -
Element Dictionary

� Schema: Core Definition
� Version: 5.0 release candidate 3
� Release Date: 26 May 2006

The following is a description of the elements, types, and attributes that compose the core schema for
encoding Open Vulnerability and Assessment Language (OVAL) Definitions. Some of the objects
defined here are extended and enhanced by individual component schemas, which are described in
separate documents. Each of the elements, types, and attributes that make up the Core Definition Schema
are described in detail and should provide the information necessary to understand what each represents.
This document is intended for developers and assumes some familiarity with XML. A high level
description of the interaction between these objects is not outlined here.

The OVAL Schema is maintained by The MITRE Corporation and developed by the public OVAL
Community. For more information, including how to get involved in the project and how to submit
change requests, please visit the OVAL website at http://oval.mitre.org.

< oval_definitions >

The oval_definitions element is the root of an OVAL Definition Document. Its purpose is to bind together
the major sections of a document - generator, definitions, tests, objects, states, and variables - which are
the children of the root element. The generator section must be present and provides information about
when the definition file was compiled and under what version. The optional definitions, tests, objects,
states, and variables sections define the specific characteristics that should be evaluated on a system to
determine the truth values of the OVAL Definition Document. The optional Signature element allows an
XML Signature as defined by the W3C to be attached to the document. This allows authentication and
data integrity to be provided to the user. Enveloped signatures are supported.

Child Elements Type MinOccurs MaxOccurs

generator oval:GeneratorType 1 1

definitions oval-def:DefinitionsType 0 1

tests oval-def:TestsType 0 1

objects oval-def:ObjectsType 0 1

states oval-def:StatesType 0 1

variables oval-def:VariablesType 0 1

ds:Signature n/a 0 1

== DefinitionsType ==

The DefinitionsType complex type is a container for one or more definition elements. Each definition
element describes a single OVAL Definition. Please refer to the description of the DefinitionType for
more information about an individual definition.

== DefinitionType ==

The DefinitionType defines a single OVAL Definition. A definition is the key structure in OVAL. It is
analogous to the logical sentence or proposition: if a computer's state matches the configuration
parameters laid out in the criteria, then that computer exhibits the state described. The DefinitionType
contains a section for various metadata related elements that describe the definition. This includes a
description, version, affected system types, and reference information. The notes section of a definition
should be used to hold information that might be helpful to someone examining the technical aspects of
the definition. For example, why certain tests have been included in the criteria, or maybe a link to where
further information can be found. The DefinitionType also (unless the definition is deprecated) contains a
criteria child element that joins individual tests together with a logical operator to specify the specific
computer state being described.

The required id attribute is the OVAL-ID of the Definition. The form of an OVAL-ID must follow the
specific format described by the definitionidPattern. The required version attribute holds the current
version of the definition. Versions are integers, starting at 1 and incrementing every time a definition is
modified. The required class attribute indicates the specific class to which the definition belongs. See the
definition of classEnumeration for more information about the different valid classes. The optional
deprecated attribute signifies that an id is no longer to be used or referenced but the information has been
kept around for historic purposes.

== MetadataType ==

Child Elements Type MinOccurs MaxOccurs

definition oval-def:DefinitionType 1 unbounded

Attributes:

- id oval:DefinitionIDPattern (required)

- version xsd:integer (required)

- class oval-def:ClassEnumeration (required)

- deprecated xsd:boolean (optional -- default='false')

Child Elements Type MinOccurs MaxOccurs

metadata oval-def:MetadataType 1 1

notes oval-def:NotesType 0 1

criteria oval-def:CriteriaType 0 1

The MetadataType complex type contains all the metadata available to an OVAL Definition. This
metadata is for informational purposes only and is not part of the criteria used to evaluate machine state.
The required title child element holds a short string that is used to quickly identify the definition to a
human user. The affected metadata item contains information about the system(s) for which the definition
has been written. Remember that this is just metadata and not part of the criteria. Please refer to the
AffectedType description for more information. The required description element contains a textual
description of the configuration state being addressed by the OVAL Definition. In the case of a definition
from the vulnerability class, the reference is usually the Common Vulnerability and Exposures (CVE)
Identifier, and this description field corresponds with the CVE description.

Additional metadata is also allowed although it is not part of the official OVAL Schema. Individual
organizations can place metadata items that they feel are important and these will be skipped during the
validation. All OVAL really cares about is that the stated metadata items are there.

== AffectedType ==

Each OVAL Definition is written to evaluate a certain type of system(s). The family, platform(s), and
product(s) of this target are described by the AffectedType whose main purpose is to provide hints for
tools using OVAL Definitions. For instance, to help a reporting tool only use Windows definitions, or to
pre-select only Red Hat definitions to be evaluated. Note, the inclusion of a particular platform or product
does not mean the definition is physically checking for the existence of the platform or product. For the
actual test to be performed, the correct test must still be included in the definition's criteria section.

The AffectedType complex type details the specific system, application, subsystem, library, etc. for which
a definition has been written. If a definition is not tied to a specific product, then this element should not
be included. The absence of the platform or product element can be thought of as definition applying to
all platforms or products. The inclusion of a particular platform or product does not mean the definition is
physically checking for the existence of the platform or product. For the actual test to be performed, the
correct test must still be included in the definition's criteria section. To increase the utility of this element,
care should be taken when assigning and using strings for product names. The schema places no
restrictions on the values that can be assigned, potentially leading to many different representations of the
same value. For example 'Internet Explorer' and 'IE'. The current convention is to fully spell out all terms,
and avoid the use of abbreviations at all costs.

Child Elements Type MinOccurs MaxOccurs

title xsd:string 1 1

affected oval-def:AffectedType 0 unbounded

reference oval-def:ReferenceType 0 unbounded

description xsd:string 1 1

Attributes:

- family oval:FamilyEnumeration (required)

Child Elements Type MinOccurs MaxOccurs

platform xsd:string 0 unbounded

== ReferenceType ==

The ReferenceType complex type links the OVAL Definition to a definitive external reference. For
example, CVE Identifiers for vulnerabilities. The intended purpose for this reference is to link the
definition to a variety of other sources that address the same issue being specified by the OVAL
Definition.

The required source attribute specifies where the reference is coming from. In other words, it identifies
the reference repository being used. The required ref_id attribute is the external id of the reference. The
optional ref_url attribute is the URL to the reference.

== NotesType ==

The NotesType complex type is a container for one or more note child elements. Each note contains some
information about the definition or tests that it references. A note may record an unresolved question
about the definition or test or present the reason as to why a particular approach was taken.

== CriteriaType ==

The CriteriaType complex type describes the high level container for all the tests and represents the meat
of the definition. Each criteria can contain other criteria elements in a recursive structure allowing
complex logical trees to be constructed. Each referenced test is represented by a criterion element. Please
refer to the description of the CriterionType for more information about and individual criterion element.
The optional extend_definition element allows existing definitions to be included in the criteria. Refer to
the description of the ExtendDefinitionType for more information.

The required operator attribute provides the logical operator that binds the different statements inside a
criteria together. The optional negate attribute signifies that the result of the criteria as a whole should be
negated during analysis. For example, consider a criteria that evaluates to TRUE if a certain software is
installed. By negating this test, it now evaluates to TRUE if the software is NOT installed. The optional
comment attribute provides a short description of the criteria.

product xsd:string 0 unbounded

Attributes:

- source xsd:string (required)

- ref_id xsd:string (required)

- ref_url xsd:anyURI (optional)

Child Elements Type MinOccurs MaxOccurs

note xsd:string 1 unbounded

Attributes:

- operator oval:OperatorEnumeration (optional -- default='AND')

== CriterionType ==

The CriterionType complex type identifies a specific test to be included in the definition's criteria.

The required test_ref attribute is the actual id of the test being referenced. The optional negate attribute
signifies that the result of an individual test should be negated during analysis. For example, consider a
test that evaluates to TRUE if a specific patch is installed. By negating this test, it now evaluates to TRUE
if the patch is NOT installed. The optional comment attribute provides a short description of the specified
test and should mirror the comment attribute of the actual test.

== ExtendDefinitionType ==

The ExtendDefinitionType complex type allows existing definitions to be extended by another definition.
This works by evaluating the extended definition and then using the result within the logical context of
the extending definition.

The required definition_ref attribute is the actual id of the definition being extended. The optional negate
attribute signifies that the result of an extended definition should be negated during analysis. For example,
consider a definition that evaluates TRUE if a certain software is installed. By negating the definition, it
now evaluates to TRUE if the software is NOT installed. The optional comment attribute provides a short
description of the specified definition and should mirror the title metadata of the extended definition.

- negate xsd:boolean (optional -- default='false')

- comment xsd:string (optional)

Child Elements Type MinOccurs MaxOccurs

criteria oval-def:CriteriaType

criterion oval-def:CriterionType

extend_definition oval-def:ExtendDefinitionType

Attributes:

- test_ref oval:TestIDPattern (required)

- negate xsd:boolean (optional -- default='false')

- comment xsd:string (optional)

Attributes:

- definition_ref oval:DefinitionIDPattern (required)

- negate xsd:boolean (optional -- default='false')

- comment xsd:string (optional)

== TestsType ==

The TestsType complex type is a container for one or more test child elements. Each test element
describes a single OVAL Test. Please refer to the description of the TestType for more information about
an individual test.

< test >

The test element is an abstract element that is meant to be extended (via substitution groups) by the tests
found in the component schemas. An actual test element is not valid. The use of this abstract class
simplifies the OVAL schema by allowing individual tests to inherit the optional notes child element, and
the id and comment attributes from the base TestType. Please refer to the description of the TestType
complex type for more information.

== TestType ==

The base type of every test includes an optional notes element and five attributes. The notes section of a
test should be used to hold information that might be helpful to someone examining the technical aspects
of the test. For example, why certain values have been used by the test, or maybe a link to where further
information can be found. Please refer to the description of the NotesType complex type for more
information about the notes element.

The required id attribute uniquely identifies each test, and must conform to the format specified by the
testidPattern simple type. The required version attribute holds the current version of the test. Versions are
integers, starting at 1 and incrementing every time a test is modified. The required check attribute
determines what group of objects to test. (For example: Should the test check that all files match a
specified version or that at least one file matches the specified version?) The valid check values are
explained in the description of the checkEnumeration simple type. The required comment attribute
provides a short description of the test. The optional deprecated attribute signifies that an id is no longer
to be used or referenced but the information has been kept around for historic purposes.

Child Elements Type MinOccurs MaxOccurs

oval-def:test n/a 1 unbounded

Attributes:

- id oval:TestIDPattern (required)

- version xsd:integer (required)

- check oval:CheckEnumeration (required)

- comment xsd:string (required)

- deprecated xsd:boolean (optional -- default='false')

Child Elements Type MinOccurs MaxOccurs

notes oval-def:NotesType 0 1

== ObjectRefType ==

The ObjectRefType complex type defines an object reference to be used by OVAL Tests that are defined
in the component schemas. The required object_ref attribute specifies the id of the OVAL Object being
referenced.

== StateRefType ==

The StateRefType complex type defines a state reference to be used by OVAL Tests that are defined in
the component schemas. The required state_ref attribute specifies the id of the OVAL State being
referenced.

== ObjectsType ==

The ObjectsType complex type is a container for one or more object child elements. Each object element
provides details that define a set of matching objects to be used by an OVAL Test. Please refer to the
description of the object element for more information about an individual object.

< object >

The object element is an abstract element that is meant to be extended (via substitution groups) by the
objects found in the component schemas. An actual object element is not valid. The use of this abstract
class simplifies the OVAL schema by allowing individual objects to inherit any common elements and
attributes from the base ObjectType. The optional notes child element, and the id and comment attributes
from the base testType. A description of the notes element can be found under the definitions section.
Please refer to the description of the ObjectType complex type for more information.

== ObjectType ==

The base type of every object includes an optional notes element. The notes element of an object should
be used to hold information that might be helpful to someone examining the technical aspects of the

Attributes:

- object_ref oval:ObjectIDPattern (required)

Attributes:

- state_ref oval:StateIDPattern (required)

Child Elements Type MinOccurs MaxOccurs

oval-def:object n/a 1 unbounded

object. For example, why certain values have been used, or maybe a link to where further information can
be found. Please refer to the description of the NotesType complex type for more information about the
notes element.

The required id attribute uniquely identifies each object, and must conform to the format specified by the
objectidPattern simple type. The required version attribute holds the current version of the object element.
Versions are integers, starting at 1 and incrementing every time an object is modified. The optional
deprecated attribute signifies that an id is no longer to be used or referenced but the information has been
kept around for historic purposes.

< set >

The set element enables complex objects to be described. It is a recursive element in that each set element
can contain additional set elements as children. Each set element defines characteristics that produce a
matching set of objects. The possible characteristics are an object reference and a collection of filters. The
object_reference refers to an existing OVAL Object. The filter element provides a reference to an existing
OVAL State. A filter is used to eliminate certain object from the set. Each filter is applied to each OVAL
Object before the set_operator is applied. For example, if an object_reference points to an OVAL Object
that is every file in a certain directory, a filter might be set up to limit the object set to only those files
with a size less than 10 KB. If multiple filters are provided, then each filter is used separately against the
defined object set. In other words, if an object matches any of the supplied filters, then it is thrown out of
the set.

The required set_operator attribute defines how different child sets are combined to form the overall set of
objects. For example, does one take the union of different set or the intersection? For a description of the
valid values please refer to the SetOperatorEnumeration simple type.

Attributes:

- id oval:ObjectIDPattern (required)

- version xsd:integer (required)

- deprecated xsd:boolean (optional -- default='false')

Child Elements Type MinOccurs MaxOccurs

notes oval-def:NotesType 0 1

Attributes:

- set_operator oval-def:SetOperatorEnumeration (optional -- default='UNION')

Child Elements Type MinOccurs MaxOccurs

object_reference oval:ObjectIDPattern 1 2

filter oval:StateIDPattern 0 unbounded

== StatesType ==

The StatesType complex type is a container for one or more state child elements. Each state provides
details about specific characteristics that can be used during an evaluation of an object. Please refer to the
description of the state element for more information about an individual state.

< state >

The state element is an abstract element that is meant to be extended (via substitution groups) by the states
found in the component schemas. An actual state element is not valid. The use of this abstract class
simplifies the OVAL schema by allowing individual states to inherit the optional notes child element, and
the id and operator attributes from the base StateType. Please refer to the description of the StateType
complex type for more information.

== StateType ==

The base type of every state includes an optional notes element and two attributes. The notes section of a
state should be used to hold information that might be helpful to someone examining the technical aspects
of the state. For example, why certain values have been used by the state, or maybe a link to where further
information can be found. Please refer to the description of the NotesType complex type for more
information about the notes element.

The required id attribute uniquely identifies each state, and must conform to the format specified by the
stateidPattern simple type. The required version attribute holds the current version of the state. Versions
are integers, starting at 1 and incrementing every time a state is modified. The required operator attribute
provides the logical operator that binds the different characteristics inside a state together. The optional
deprecated attribute signifies that an id is no longer to be used or referenced but the information has been
kept around for historic purposes.

When evaluating a particular state against an object, one should evaluate each individual entity separately.
The individual results are then combined by the operator to produce an overall result. This process holds
true even when there are multiple instances of the same entity. Evaluate each instance separately, taking
the entity check attribute into account, and then combine everything using the operator.

Child Elements Type MinOccurs MaxOccurs

oval-def:state n/a 1 unbounded

Attributes:

- id oval:StateIDPattern (required)

- version xsd:integer (required)

- operator oval:OperatorEnumeration (optional -- default='AND')

- deprecated xsd:boolean (optional -- default='false')

Child Elements Type MinOccurs MaxOccurs

notes oval-def:NotesType 0 1

== VariablesType ==

The VariablesType complex type is a container for one or more variable child elements. Each variable
element is a way to define one or more values to be obtained at the time a definition is evaluated.

< variable >

The variable element is an abstract element that is meant to be extended (via substitution groups) by the
different types of variables. An actual variable element is not valid. The different variable types describe
different sources for obtaining a value(s) for the variable. There are currently three types of variables;
local, external, and constant. Please refer to the description of each one for more specific information. The
value(s) of a variable is treated as if it were inserted where referenced. One of the main benefits of
variables is that they allow tests to evaluate user-defined policy. For example, an OVAL Test might check
to see if a password is at least a certain number of characters long, but this number depends upon the
individual policy of the user. To solve this, the test for password length can be written to refer to a
variable element that defines the length.

If a variable defines an array of values, any entity that references the variable will evaluate to true
depending on the value of the var_check attribute. For example, if an entity 'size' with an operation of 'less
than' references a variable that returns five different integers, and the var_check attribute has a value of
'all', then the 'size' entity returns true only if the actual size is less than each of the five integers defined by
the variable. If a variable does not return any value, then an error should be thrown during OVAL
analysis.

== VariableType ==

The VariableType complex type defines attributes associated with each OVAL Variable. The required id
attribute uniquely identifies each variable, and must conform to the format specified by the varidPattern
simple type. The required version attribute holds the current version of the variable. Versions are integers,
starting at 1 and incrementing every time a variable is modified. The required datatype attribute specifies
the type of value being defined. The required comment attribute provides a short description of the
variable. The optional deprecated attribute signifies that an id is no longer to be used or referenced but the
information has been kept around for historic purposes.

Child Elements Type MinOccurs MaxOccurs

oval-def:variable n/a 1 unbounded

Attributes:

- id oval:VariableIDPattern (required)

- version xsd:integer (required)

- datatype oval:DatatypeEnumeration (required)

- comment xsd:string (required)

< external_variable >

The external_variable element extends the VariableType and defines a variable with some external
source. An actual value(s) for the variable is not provided here as it is retrieved during the evaluation of
the OVAL Definition. An unbounded set of possible child elements can be specified that together specify
the possible values of an external variable. In other words, each value assigned by an external source must
match one of the possible values specified. Note that it is not necessary to declare a variable's possible
value, but the option is available if desired. If no possible child elements are specified, than the valid
values are only bound to the specified datatype. Please refer to the description of the PossibleType
complex type for more information.

== PossibleType ==

The PossibleType complex type outlines a possible expected value of an external variable. Each possible
element contains either an unbounded list of child possible elements further specifying possible values, or
an unbounded list of child restriction elements that specify any actual values. One can think of the
possible elements as an OR'd list of possible values, and the restriction elements as an AND'd list of value
descriptions. Please refer to the description of the RestrictionType complex type for more information.

== RestrictionType ==

The RestrictionType complex type outlines an actual expected value of an external variable. The required
hint attribute gives a short description of what the value means. The required operation attribute specifies
how to compare the actual value of the variable with the possible value. Please refer to the
operationEnumeration simple type for a description of the valid operations.

- deprecated xsd:boolean (optional -- default='false')

Child Elements Type MinOccurs MaxOccurs

possible oval-def:PossibleType 0 unbounded

Child Elements Type MinOccurs MaxOccurs

possible oval-def:PossibleType 0 unbounded

restriction oval-def:RestrictionType 0 unbounded

Attributes:

- hint xsd:string (required)

- operation oval:OperationEnumeration (required)

Simple Content xsd:anySimpleType

< constant_variable >

The constant_variable element extends the VariableType and defines a variable with a constant value(s).
Each constant_variable defines either a single value or an array of values to be used throughout the
evaluation of the OVAL Definition File in which it has been defined. Constant variables can not be over-
ridden by an external source. The actual value of a constant variable is defined by the required value child
element. An array of values can be specified by including multiple instances of the value element. Please
refer to the description of the ValueType complex type for more information.

== ValueType ==

The ValueType complex type holds the actual value of the variable when dealing with a constant variable.
This value should be used by all tests that reference this variable. The value can not be over-ridden by an
external source.

< local_variable >

The local_variable element extends the VariableType and defines a variable with some local source. The
actual value(s) for the variable is not provided in the OVAL Definition document but rather it is retrieved
during the evaluation of the OVAL Definition. A value can be as simple as a literal string or as complex
as multiple registry keys concatenated together. Each local variable is defined by either a single
component or a complex function. Please refer to the description of the ComponentGroup for more
information.

-- ComponentGroup --

Any value that is pulled directly off the local system is defined by the basic component element. For
example, the name of a user or the value of a registry key. Please refer to the definition of the
ObjectComponentType for more information. A value can also be obtained from another variable. The
variable element identifies a variable id to pull a value(s) from. Please refer to the definition of the
VariableComponentType for more information. Literal values can also be specified.

Child Elements Type MinOccurs MaxOccurs

value oval-def:ValueType 1 unbounded

Attributes:

Simple Content xsd:anySimpleType

Child Elements Type MinOccurs MaxOccurs

oval-def:ComponentGroup n/a 1 1

== ObjectComponentType ==

The ObjectComponentType complex type defines a specific value on the local system to obtain. The
required obj_id provides a reference to an existing OVAL Object declaration. This object defines the
object to examine and eventually pull the value from. The required item_field defines which piece of data
to retrieve from the object referenced by the obj_id. For example, if the obj_id references a file, the
item_field may define the version as the piece of information to use as the value of the variable. The data
to retrieve can be found in the OVAL System Characteristics file under the items associated with the
object referenced by obj_id.

== VariableComponentType ==

The VariableComponentType complex type defines a specific value obtained by looking at the value of
another OVAL Variable. The required var_ref attribute provides a reference to the variable. One must
make sure that the variable reference does not point to the parent variable that uses this component to
avoid a race condition.

-- FunctionGroup --

Complex functions have been defined that help determine how to manipulated specific values. These
functions can be nested together to form complex statements. Each function is designed to work on a
specific type of data. If the data being worked on is not of the correct type, a cast should be attempted
before throwing an error. For example, if a concat function includes a registry component that returns an
integer, then the integer should be cast as a string in order to work with the concat function. Note that if
the operation being applied to the variable by the calling entity is "pattern match", then all the functions
are performed before the regular expression is evaluated. In short, the variable would produce a value as
normal and then any pattern match operation would be performed. Please refer to the description of a
specific function for more details about it.

Child Elements Type MinOccurs MaxOccurs

object_component oval-def:ObjectComponentType

variable_component oval-def:VariableComponentType

literal_component xsd:anySimpleType

oval-def:FunctionGroup n/a

Attributes:

- object_ref oval:ObjectIDPattern (required)

- item_field xsd:string (required)

Attributes:

- var_ref oval:VariableIDPattern (required)

== BeginFunctionType ==

The begin function takes a single string component and defines a character (or string) that the component
string should start with. The character attribute defines the specific character (or string). The character (or
string) is only added to the component string if the component string doesn't already start with the
specified character (or string).

== ConcatFunctionType ==

The concat function takes two or more components and concatenates them together to form a single
string. The first component makes up the begining of the resulting string and any following components
are added to the end it. If one of the components returns multiple values then the concat function would be
performed multiple times and the end result would be an array of values for the local variable. For
example assume a local variable has two sub-components: a basic component element returns the values
"abc" and "def", and a literal component element that has a value of "xyz". The local_variable element
would be evaluated to have two values, "abcxyz" and "defxyz".

== EndFunctionType ==

The end function takes a single string component and defines a character (or string) that the component
string should end with. The character attribute defines the specific character (or string). The character (or
string) is only added to the component string if the component string doesn't already end with the
specified character (or string).

Child Elements Type MinOccurs MaxOccurs

begin oval-def:BeginFunctionType

concat oval-def:ConcatFunctionType

end oval-def:BeginFunctionType

escape_regex oval-def:EscapeRegexFunctionType

split oval-def:SplitFunctionType

substring oval-def:SubstringFunctionType

Attributes:

- character xsd:string (required)

Child Elements Type MinOccurs MaxOccurs

oval-def:ComponentGroup n/a

Child Elements Type MinOccurs MaxOccurs

oval-def:ComponentGroup n/a

== EscapeRegexFunctionType ==

The escape regex function takes a single string component and escapes all the regular expression
characters. The purpose for this is that many times, a component used in pattern match needs to be treated
a literal string and not regular expression. For example assume a basic component element that pulls a file
path out of the Windows registry. This path is a string that might contain regular expression characters but
these characters are not intended to be such, so they need to be escaped. This function allows a definition
writer to mark which components are in regular expression format and which aren't.

== SplitFunctionType ==

The split function takes a single string component and turns it into multiple values based on a delimiter
string. For example assume a basic component element that returns the value "a-b-c-d" with the delimiter
set to "-". The local_variable element would be evaluated to have four values "a", "b", "c", and "d". If the
string component used by the split function returns multiple values, then the split is performed multiple
times.

== SubstringFunctionType ==

The substring function takes a single string component and produces a single value that contains a portion
of the original string. The substring_start attribute defines the starting position in the original string. Note,
to include the first character of the string, the start position would be 1. Also note that a value less than
one also means starting at the first character of the string. The substring_length attribute defines how
many character after and including the starting character to include. Note that a substring_length value
greater than the actual length of the string or a negative value means to include all the characters after the
starting character. For example assume a basic component element that returns the value "abcdefg" with a
substring_start value of 3 and a substring_length value of 2. The local_variable element would be evaluate

Attributes:

- character xsd:string (required)

Child Elements Type MinOccurs MaxOccurs

oval-def:ComponentGroup n/a

Child Elements Type MinOccurs MaxOccurs

oval-def:ComponentGroup n/a

Attributes:

- delimiter xsd:string (required)

Child Elements Type MinOccurs MaxOccurs

oval-def:ComponentGroup n/a

to have a single value of "cd". If the string component used by the substring function returns multiple
values, then the substring operation is performed multiple times and results in multiple values for the
component.

-- ActionEnumeration --

The ActionEnumeration simple type defines acceptable actions for multiple values retrieved off the local
system. The intention is to describe the different ways to come up with a single value for the variable
when multiple components were specified.

-- ClassEnumeration --

The ClassEnumeration simple type defines the different classes of definitions. These classes are used to
group definitions by the type of system state they are describing. For example, this allows users to find all
the vulnerability definitions.

Attributes:

- substring_start xsd:int (required)

- substring_length xsd:int (required)

Child Elements Type MinOccurs MaxOccurs

oval-def:ComponentGroup n/a

Value Description

concat A value of 'concat' means that the actual value is a
made up of a concatenated list of component and/or
literal strings.

maximum 'maximum' says the actual value retrieved shall be
the greatest of all the values specified.

minimum 'minimum' says the actual value retrieved shall be
the smallest of all the values specified.

throw error 'throw error' means that multiple values were not
expected and if this occurs, an error should be
thrown.

Value Description

compliance A compliance definition describes the state of a
machine as it complies with a specific policy.

-- SetOperatorEnumeration --

The SetOperatorEnumeration simple type defines acceptable set operations. Set operations are used to
take multiple different sets of objects within OVAL and merge them into a single set. The different
operators that guide this merge are defined below. For each operator, if only a single object has been
supplied, then the resulting set is simply that complete object.

== EntityBaseType ==

The EntityBaseType complex type is an abstract type that defines the default attributes associated with

inventory An inventory definition describes whether a specific
piece of software is installed on the system.

miscellaneous The 'miscellaneous' class is used to identify
definitions that do not fall into any of the other
defined classes.

patch A patch definition details the machine state of
whether a patch executable should be installed.

vulnerability A vulnerability definition describes the conditions
under which a machine is vulnerable.

Value Description

COMPLEMENT The complement operator is defined in OVAL as a
relative complement. The resulting set contains
everything that belongs to the first declared set that
is not part of the second declared set. If A and B are
sets (with A being the first declared set), then the
relative complement is the set of elements in A, but
not in B.

INTERSECTION The intersection of two sets in OVAL results in a
set that contains everything that belongs both sets in
the collection, but nothing else. If A and B are sets,
then the intersection of A and B contains all the
elements of A that also belong to B, but no other
elements.

UNION The union of two sets in OVAL results in a set that
contains everything that belongs to either of the
original sets. If A and B are sets, then the union of
A and B contains all the elements of A and all
elements of B, with the duplicates removed.

every entity. Entities can be found in both OVAL Objects and OVAL States and represent the individual
properties associated with items found on a system. An example of a single entity would be the path of a
file. Another example would be the version of the file.

The optional datatype determines the type of data expected. (the default datatype is 'string') The optional
operation determines how the individual entities should be evaluated. (the default operator is 'equals')
Both of these attributes are optional in order to keep the XML clean and readable. The default values are
used most of the time and putting datatype="string" and operator="equals" for each element would muddy
up the XML. The optional var_ref attribute refers the value of the entity to a variable element. When
supplied, the value(s) associated with the OVAL Variable should be used as the value(s) of the entity.

== EntityObjectBaseType ==

The EntityObjectBaseType complex type is an abstract type that extends the EntityBaseType and is used
by the entities within an OVAL Objects.

If the entity uses a var_ref and the associated variable defines more than one value, the optional var_check
attribute defines how the data collection should proceed. For example, if an object entity 'filename' with
an operation of 'does not equal' references a variable that returns five different values, and the var_check
attribute has a value of 'all', then an actual file on the system matches only if the actual filename does not
equal any of the variable values. If a variable does not return any value, then an error should be thrown
during OVAL analysis.

== EntityObjectAnyType ==

The EntityObjectAnyType type is extended by the entities of an individual OVAL Object. This type
provides uniformity to each object entity by including the attributes found in the EntityObjectBaseType.
This specific type describes any simple data.

Attributes:

- datatype oval:DatatypeEnumeration (optional -- default='string')

- operation oval:OperationEnumeration (optional -- default='equals')

- var_ref oval:VariableIDPattern (optional)

Simple Content xsd:anySimpleType

Attributes:

- var_check oval:CheckEnumeration (optional -- default='all')

Simple Content oval-def:EntityBaseType

Attributes:

== EntityObjectBoolType ==

The EntityBoolType type is extended by the entities of an individual OVAL Object. This type provides
uniformity to each object entity by including the attributes found in the EntityObjectBaseType. This
specific type describes simple boolean data. The empty string is also allowed when using a variable
reference with an element.

== EntityObjectFloatType ==

The EntityObjectFloatType type is extended by the entities of an individual OVAL Object. This type
provides uniformity to each object entity by including the attributes found in the EntityObjectBaseType.
This specific type describes simple float data. The empty string is also allowed when using a variable
reference with an element.

== EntityObjectIntType ==

The EntityIntType type is extended by the entities of an individual OVAL Object. This type provides
uniformity to each object entity by including the attributes found in the EntityObjectBaseType. This
specific type describes simple integer data. The empty string is also allowed when using a variable
reference with an element.

== EntityObjectStringType ==

The EntityStringType type is extended by the entities of an individual OVAL Object. This type provides
uniformity to each object entity by including the attributes found in the EntityObjectBaseType. This
specific type describes simple string data.

== EntityStateBaseType ==

The EntityStateBaseType complex type is an abstract type that extends the EntityBaseType and is used by
the entities withing an OVAL State.

The optional entity_check attribute specifies how to handle entities with multiple instances in the system
characteristics file. For example, if an OVAL Object has multiple values associated with it and the OVAL
State defines the value entity as 'less than 3', the entity_check attribute determines if all values must be
less than 3, or at least one value must be less than 3, etc.

If the state entity uses a var_ref and the associated variable defines more than one value, the optional
var_check attribute defines how the evaluation should proceed. For example, if an entity 'size' with an
operation of 'less than' references a variable that returns five different integers, and the var_check attribute
has a value of 'all', then the 'size' entity returns true only if the actual size is less than each of the five
integers defined by the variable. If a variable does not return any value, then an error should be thrown

Simple Content oval-def:EntityObjectBaseType

during OVAL analysis.

== EntityStateAnyType ==

The EntityStateAnyType type is extended by the entities of an individual OVAL State. This type provides
uniformity to each state entity by including the attributes found in the EntityStateBaseType. This specific
type describes any simple data.

== EntityStateBoolType ==

The EntityStateBoolType type is extended by the entities of an individual OVAL State. This type
provides uniformity to each state entity by including the attributes found in the EntityStateBaseType. This
specific type describes simple boolean data. The empty string is also allowed when using a variable
reference with an element.

== EntityStateFloatType ==

The EntityStateFloatType type is extended by the entities of an individual OVAL State. This type
provides uniformity to each state entity by including the attributes found in the EntityStateBaseType. This
specific type describes simple float data. The empty string is also allowed when using a variable reference
with an element.

== EntityStateIntType ==

The EntityStateIntType type is extended by the entities of an individual OVAL State. This type provides
uniformity to each state entity by including the attributes found in the EntityStateBaseType. This specific
type describes simple integer data. The empty string is also allowed when using a variable reference with
an element.

== EntityStateStringType ==

Attributes:

- entity_check oval:CheckEnumeration (optional -- default='all')

- var_check oval:CheckEnumeration (optional -- default='all')

Simple Content oval-def:EntityBaseType

Attributes:

Simple Content oval-def:EntityStateBaseType

The EntityStateStringType type is extended by the entities of an individual OVAL State. This type
provides uniformity to each state entity by including the attributes found in the EntityStateBaseType. This
specific type describes simple string data.

