
- Open Vulnerability and Assessment Language -

Element Dictionary

� Schema: IOS Definition
� Version: 5.3
� Release Date: 6/22/2007 11:17:50 AM

The following is a description of the elements, types, and attributes that compose the IOS specific tests found in
Open Vulnerability and Assessment Language (OVAL). Each test is an extension of the standard test element
defined in the Core Definition Schema. Through extension, each test inherits a set of elements and attributes
that are shared amongst all OVAL tests. Each test is described in detail and should provide the information
necessary to understand what each element and attribute represents. This document is intended for developers
and assumes some familiarity with XML. A high level description of the interaction between the different tests
and their relationship to the Core Definition Schema is not outlined here.

The OVAL Schema is maintained by The Mitre Corporation and developed by the public OVAL Community.
For more information, including how to get involved in the project and how to submit change requests, please
visit the OVAL website at http://oval.mitre.org.

< global_test >

The global test is used to check for the existence of a particular line in the ios config file under the global
context. It extends the standard TestType as defined in the oval-definitions-schema and one should refer to the
TestType description for more information. The required object element references a global_object and the
optional state element specifies the data to check. The evaluation of the test is guided by the check attribute that
is inherited from the TestType.

< global_object >

The global_object element is used by a global test to define the object to be evaluated. For the most part this
object checks for existance and is used without a state comparision. Each object extends the standard
ObjectType as definied in the oval-definitions-schema and one should refer to the ObjectType description for
more information. The common set element allows complex objects to be created using filters and set logic.
Again, please refer to the description of the set element in the oval-definitions-schema.

Child Elements Type MinOccurs MaxOccurs

object oval-def:ObjectRefType 1 1

state oval-def:StateRefType 0 1

Child Elements Type MinOccurs MaxOccurs

global_command oval-def:EntityObjectStringType 1 1

< global_state >

The global_state element defines the different information that can be found in the ios config file under the
global context. Please refer to the individual elements in the schema for more details about what each
represents.

< interface_test >

< interface_object >

< interface_state >

< line_test >

The line test is used to check the properties of specific output lines from a SHOW command, such as show
running-config. It extends the standard TestType as defined in the oval-definitions-schema and one should refer

Child Elements Type MinOccurs MaxOccurs

global_command oval-def:EntityStateStringType 1 1

Child Elements Type MinOccurs MaxOccurs

object oval-def:ObjectRefType 1 1

state oval-def:StateRefType 0 1

Child Elements Type MinOccurs MaxOccurs

name oval-def:EntityObjectStringType 1 1

Child Elements Type MinOccurs MaxOccurs

name oval-def:EntityStateStringType 0 1

ip_directed_broadcast_command oval-def:EntityStateStringType 0 1

no_ip_directed_broadcast_command oval-def:EntityStateStringType 0 1

proxy_arp_command oval-def:EntityStateStringType 0 1

shutdown_command oval-def:EntityStateStringType 0 1

to the TestType description for more information. The required object element references a line_object and the
optional state element specifies the data to check. The evaluation of the test is guided by the check attribute that
is inherited from the TestType.

< line_object >

The line_object element is used by a line test to define the object to be evaluated. Each object extends the
standard ObjectType as definied in the oval-definitions-schema and one should refer to the ObjectType
description for more information. The common set element allows complex objects to be created using filters
and set logic. Again, please refer to the description of the set element in the oval-definitions-schema.

A line object consists of a show_subcommand entity that is the name of a SHOW sub-command to be tested.

< line_state >

The line_state element defines the different information that can be used to evaluate the result of a specific
SHOW sub-command. This includes the name of ths sub-command and the corresponding config line. Please
refer to the individual elements in the schema for more details about what each represents.

< snmp_test >

Tests if lines under the global context associated with snmp that have a specifiec access list or cmmunity name.

Child Elements Type MinOccurs MaxOccurs

object oval-def:ObjectRefType 1 1

state oval-def:StateRefType 0 1

Child Elements Type MinOccurs MaxOccurs

show_subcommand oval-def:EntityObjectStringType 1 1

Child Elements Type MinOccurs MaxOccurs

show_subcommand oval-def:EntityStateStringType 0 1

config_line oval-def:EntityStateStringType 0 1

Child Elements Type MinOccurs MaxOccurs

object oval-def:ObjectRefType 1 1

state oval-def:StateRefType 0 1

< snmp_object >

The snmp_object element is used by a snmp test to define those objects to evaluated based on a specified state.
There is actually only one object relating to snmp and this is the system as a whole. Therefore, there are no
child entities defined. Any OVAL Test written to check snmp will reference the same snmp_object which is
basically an empty object element.

< snmp_state >

< tclsh_test >

The tclsh test is used to check tclsh information of the IOS operating system. It extends the standard TestType
as defined in the oval-definitions-schema and one should refer to the TestType description for more
information. The required object element references a tclsh_object and the optional state element specifies the
data to check. The evaluation of the test is guided by the check attribute that is inherited from the TestType.

< tclsh_object >

The tclsh_object element is used by a tclsh test to define those objects to evaluated based on a specified state.
There is actually only one object relating to tchlsh and this is the system as a whole. Therefore, there are no
child entities defined. Any OVAL Test written to check tclsh will reference the same tclsh_object which is
basically an empty object element.

< tclsh_state >

The tclsh_state element defines information about TCLSH. This includes the available entity which describes
whether TCLSH is available on the system. Please refer to the individual elements in the schema for more
details about what each represents.

Child Elements Type MinOccurs MaxOccurs

access_list oval-def:EntityStateStringType 0 1

community_name oval-def:EntityStateStringType 0 1

Child Elements Type MinOccurs MaxOccurs

object oval-def:ObjectRefType 1 1

state oval-def:StateRefType 0 1

Child Elements Type MinOccurs MaxOccurs

< version_test >

The version test is used to check the version of the IOS operating system. It extends the standard TestType as
defined in the oval-definitions-schema and one should refer to the TestType description for more information.
The required object element references a version_object and the optional state element specifies the data to
check. The evaluation of the test is guided by the check attribute that is inherited from the TestType.

< version_object >

The version_object element is used by a version test to define the different version information associated with
an IOS system. There is actually only one object relating to version and this is the system as a whole. Therefore,
there are no child entities defined. Any OVAL Test written to check version will reference the same
version_object which is basically an empty object element.

< version_state >

The version_state element defines the version information held within a Cisco IOS Train. A Cisco IOS train is a
vehicle for delivering releases that evolve from a common code base.

== EntityStateTrainIdentifierType ==

The EntityStateTrainIdentifierType complex type restricts a string value to a specific set of values. These values
describe the possible types of trains in a Cisco IOS release. The empty string is also allowed to support empty
emlement associated with variable references.

available oval-def:EntityStateBoolType 0 1

Child Elements Type MinOccurs MaxOccurs

object oval-def:ObjectRefType 1 1

state oval-def:StateRefType 0 1

Child Elements Type MinOccurs MaxOccurs

major_release oval-def:EntityStateStringType 0 1

train_number oval-def:EntityStateStringType 0 1

train_identifier ios-def:EntityStateTrainIdentifierType 0 1

version_string oval-def:EntityStateStringType 0 1

Value Description

mainline The mainline Train consolidates releases and fixes
defects. Inherits features from the parent T train, and
does not add additional features.

T Introduces new features and fixes defects.

S Consolidates 12.1E, 12.2 mainline, and 12.0S, which
supports high-end backbone routing, and fixes defects.

E Targets enterprise core and SP edge, supports advanced
QoS, voice, security, and firewall, and fixes defects.

B Supports broadband features and fixes defects.

