
- Open Vulnerability and Assessment Language -

Element Dictionary

� Schema: UNIX Definition
� Version: 5.3
� Release Date: 6/22/2007 11:19:06 AM

The following is a description of the elements, types, and attributes that compose generic UNIX tests found in
Open Vulnerability and Assessment Language (OVAL). Each test is an extension of the standard test element
defined in the Core Definition Schema. Through extension, each test inherits a set of elements and attributes
that are shared amongst all OVAL tests. Each test is described in detail and should provide the information
necessary to understand what each element and attribute represents. This document is intended for developers
and assumes some familiarity with XML. A high level description of the interaction between the different tests
and their relationship to the Core Definition Schema is not outlined here.

The OVAL Schema is maintained by The Mitre Corporation and developed by the public OVAL Community.
For more information, including how to get involved in the project and how to submit change requests, please
visit the OVAL website at http://oval.mitre.org.

< file_test >

The file test is used to check metadata associated with UNIX files, of the sort returned by either an ls command,
stat command or stat() system call. It extends the standard TestType as defined in the oval-definitions-schema
and one should refer to the TestType description for more information. The required object element references a
file_object and the optional state element specifies the metadata to check. The evaluation of the test is guided by
the check attribute that is inherited from the TestType.

< file_object >

The file_object element is used by a file test to define the specific file(s) to be evaluated. Each object extends
the standard ObjectType as definied in the oval-definitions-schema and one should refer to the ObjectType
description for more information. The common set element allows complex objects to be created using filters
and set logic. Again, please refer to the description of the set element in the oval-definitions-schema.

A file object defines the path and filename of the file(s). In addition, a number of behaviors may be provided
that help guide the collection of objects. Please refer to the FileBehaviors complex type for more information
about specific behaviors.

Child Elements Type MinOccurs MaxOccurs

object oval-def:ObjectRefType 1 1

state oval-def:StateRefType 0 1

Child Elements Type MinOccurs MaxOccurs

< file_state >

The file_state element defines the different metadata associate with a UNIX file. This includes the path,
filename, type, group id, user id, size, etc. In addition, the permission associated with the file are also included.
Please refer to the individual elements in the schema for more details about what each represents.

== FileBehaviors ==

behaviors unix-def:FileBehaviors 0 1

path oval-def:EntityObjectStringType 1 1

filename oval-def:EntityObjectStringType 1 1

Child Elements Type MinOccurs MaxOccurs

path oval-def:EntityStateStringType 0 1

filename oval-def:EntityStateStringType 0 1

type oval-def:EntityStateStringType 0 1

group_id oval-def:EntityStateStringType 0 1

user_id oval-def:EntityStateStringType 0 1

a_time oval-def:EntityStateStringType 0 1

c_time oval-def:EntityStateStringType 0 1

m_time oval-def:EntityStateStringType 0 1

size oval-def:EntityStateIntType 0 1

suid oval-def:EntityStateBoolType 0 1

sgid oval-def:EntityStateBoolType 0 1

sticky oval-def:EntityStateBoolType 0 1

uread oval-def:EntityStateBoolType 0 1

uwrite oval-def:EntityStateBoolType 0 1

uexec oval-def:EntityStateBoolType 0 1

gread oval-def:EntityStateBoolType 0 1

gwrite oval-def:EntityStateBoolType 0 1

gexec oval-def:EntityStateBoolType 0 1

oread oval-def:EntityStateBoolType 0 1

owrite oval-def:EntityStateBoolType 0 1

oexec oval-def:EntityStateBoolType 0 1

These behaviors allow a more detailed definition of the file objects being specified.

< inetd_test >

The inetd test is used to check information associated with different Internet services. It extends the standard
TestType as defined in the oval-definitions-schema and one should refer to the TestType description for more
information. The required object element references an inetd_object and the optional state element specifies the
information to check. The evaluation of the test is guided by the check attribute that is inherited from the
TestType.

< inetd_object >

The inetd_object element is used by an inetd test to define the specific protocol-service to be evaluated. Each
object extends the standard ObjectType as definied in the oval-definitions-schema and one should refer to the
ObjectType description for more information. The common set element allows complex objects to be created
using filters and set logic. Again, please refer to the description of the set element in the oval-definitions-
schema.

An inetd object consists of a protocol entity and a service_name entity that identifies the specific service to be
tested.

< inetd_state >

The inetd_state element defines the different information associated with a specific Internet service. Please refer
to the individual elements in the schema for more details about what each represents.

Attributes:

- max_depth n/a (optional -- default='-1')
- recurse n/a (optional -- default='none')

- recurse_direction n/a (optional -- default='none')

- recurse_file_system n/a (optional -- default='all')

Child Elements Type MinOccurs MaxOccurs

object oval-def:ObjectRefType 1 1

state oval-def:StateRefType 0 1

Child Elements Type MinOccurs MaxOccurs

protocol oval-def:EntityObjectStringType 1 1

service_name oval-def:EntityObjectStringType 1 1

< interface_test >

The interface test enumerate various attributes about the interfaces on a system. It extends the standard
TestType as defined in the oval-definitions-schema and one should refer to the TestType description for more
information. The required object element references an interface_object and the optional state element specifies
the interface information to check. The evaluation of the test is guided by the check attribute that is inherited
from the TestType.

< interface_object >

The interface_object element is used by an interface test to define the specific interfaces(s) to be evaluated.
Each object extends the standard ObjectType as definied in the oval-definitions-schema and one should refer to
the ObjectType description for more information. The common set element allows complex objects to be
created using filters and set logic. Again, please refer to the description of the set element in the oval-
definitions-schema.

An interface object consists of a single name entity that identifies which interface is being specified.

< interface_state >

The interface_state element enumerates the different properties associate with a Unix interface. Please refer to

Child Elements Type MinOccurs MaxOccurs

protocol oval-def:EntityStateStringType 0 1

service_name oval-def:EntityStateStringType 0 1

server_program oval-def:EntityStateStringType 0 1

server_arguments oval-def:EntityStateStringType 0 1

endpoint_type unix-def:EntityStateEndpointType 0 1

exec_as_user oval-def:EntityStateStringType 0 1

wait_status unix-def:EntityStateWaitStatusType 0 1

Child Elements Type MinOccurs MaxOccurs

object oval-def:ObjectRefType 1 1

state oval-def:StateRefType 0 1

Child Elements Type MinOccurs MaxOccurs

name oval-def:EntityObjectStringType 1 1

the individual elements in the schema for more details about what each represents.

< password_test >

/etc/passwd. See passwd(4).

The password test is used to check metadata associated with the UNIX password file, of the sort returned by the
passwd command. It extends the standard TestType as defined in the oval-definitions-schema and one should
refer to the TestType description for more information. The required object element references a
password_object and the optional state element specifies the metadata to check. The evaluation of the test is
guided by the check attribute that is inherited from the TestType.

< password_object >

The password_object element is used by a password test to define the object to be evaluated. Each object
extends the standard ObjectType as definied in the oval-definitions-schema and one should refer to the
ObjectType description for more information. The common set element allows complex objects to be created
using filters and set logic. Again, please refer to the description of the set element in the oval-definitions-
schema.

A password object consists of a single username entity that identifies the user whos passwords are to be
evaluated.

Child Elements Type MinOccurs MaxOccurs

name oval-def:EntityStateStringType 0 1

hardware_addr oval-def:EntityStateStringType 0 1

inet_addr oval-def:EntityStateStringType 0 1

broadcast_addr oval-def:EntityStateStringType 0 1

netmask oval-def:EntityStateStringType 0 1

flag oval-def:EntityStateStringType 0 1

Child Elements Type MinOccurs MaxOccurs

object oval-def:ObjectRefType 1 1

state oval-def:StateRefType 0 1

Child Elements Type MinOccurs MaxOccurs

username oval-def:EntityObjectStringType 1 1

< password_state >

The password_state element defines the different information associated with the system passwords. Please
refer to the individual elements in the schema for more details about what each represents.

< process_test >

The process test is used to check information found in the UNIX processes. It is equivalent to parsing the output
of the ps command. It extends the standard TestType as defined in the oval-definitions-schema and one should
refer to the TestType description for more information. The required object element references a process_object
and the optional state element specifies the process information to check. The evaluation of the test is guided by
the check attribute that is inherited from the TestType.

< process_object >

The process_object element is used by a process test to define the specific process(es) to be evaluated. Each
object extends the standard ObjectType as definied in the oval-definitions-schema and one should refer to the
ObjectType description for more information. The common set element allows complex objects to be created
using filters and set logic. Again, please refer to the description of the set element in the oval-definitions-
schema.

A process object defines the command line used to start the process(s).

Child Elements Type MinOccurs MaxOccurs

username oval-def:EntityStateStringType 0 1

password oval-def:EntityStateStringType 0 1

user_id oval-def:EntityStateStringType 0 1

group_id oval-def:EntityStateStringType 0 1

gcos oval-def:EntityStateStringType 0 1

home_dir oval-def:EntityStateStringType 0 1

login_shell oval-def:EntityStateStringType 0 1

Child Elements Type MinOccurs MaxOccurs

object oval-def:ObjectRefType 1 1

state oval-def:StateRefType 0 1

Child Elements Type MinOccurs MaxOccurs

command oval-def:EntityObjectStringType 1 1

< process_state >

The process_state element defines the different metadata associate with a UNIX process. This includes the
command line, pid, ppid, priority, and user id. Please refer to the individual elements in the schema for more
details about what each represents.

< runlevel_test >

The runlevel test is used to check information about which runlevel specified service are scheduled to exist at.
For more information see the output generated by a chkconfig --list. It extends the standard TestType as defined
in the oval-definitions-schema and one should refer to the TestType description for more information. The
required object element references a runlevel_object and the optional state element specifies the data to check.
The evaluation of the test is guided by the check attribute that is inherited from the TestType.

< runlevel_object >

The runlevel_object element is used by a runlevel_test to define the specific service(s)/runlevel combination to
be evaluated. Each object extends the standard ObjectType as definied in the oval-definitions-schema and one
should refer to the ObjectType description for more information. The common set element allows complex
objects to be created using filters and set logic. Again, please refer to the description of the set element in the
oval-definitions-schema.

Child Elements Type MinOccurs MaxOccurs

command oval-def:EntityStateStringType 0 1

exec_time oval-def:EntityStateStringType 0 1

pid oval-def:EntityStateIntType 0 1

ppid oval-def:EntityStateIntType 0 1

priority oval-def:EntityStateStringType 0 1

scheduling_class oval-def:EntityStateStringType 0 1

start_time oval-def:EntityStateStringType 0 1

tty oval-def:EntityStateStringType 0 1

user_id oval-def:EntityStateStringType 0 1

Child Elements Type MinOccurs MaxOccurs

object oval-def:ObjectRefType 1 1

state oval-def:StateRefType 0 1

< runlevel_state >

The runlevel_state element holds information about whether a specific service is schedule to start or kill at a
given runlevel. Please refer to the individual elements in the schema for more details about what each
represents.

< sccs_test >

< sccs_object >

< sccs_state >

Child Elements Type MinOccurs MaxOccurs

service_name oval-def:EntityObjectStringType 1 1

runlevel oval-def:EntityObjectStringType 1 1

Child Elements Type MinOccurs MaxOccurs

service_name oval-def:EntityStateStringType 0 1

runlevel oval-def:EntityStateStringType 0 1

start oval-def:EntityStateBoolType 0 1

kill oval-def:EntityStateBoolType 0 1

Child Elements Type MinOccurs MaxOccurs

object oval-def:ObjectRefType 1 1

state oval-def:StateRefType 0 1

Child Elements Type MinOccurs MaxOccurs

path oval-def:EntityObjectStringType 1 1

filename oval-def:EntityObjectStringType 1 1

Child Elements Type MinOccurs MaxOccurs

path oval-def:EntityStateStringType 0 1

filename oval-def:EntityStateStringType 0 1

< shadow_test >

The shadow test is used to check information from the /etc/shadow file for a specific user. This file contains a
user's password, but also their password aging and lockout information. It extends the standard TestType as
defined in the oval-definitions-schema and one should refer to the TestType description for more information.
The required object element references an inetd_object and the optional state element specifies the information
to check. The evaluation of the test is guided by the check attribute that is inherited from the TestType.

< shadow_object >

The shadow_object element is used by a shadow test to define the shadow file to be evaluated. Each object
extends the standard ObjectType as definied in the oval-definitions-schema and one should refer to the
ObjectType description for more information. The common set element allows complex objects to be created
using filters and set logic. Again, please refer to the description of the set element in the oval-definitions-
schema.

A shdow object consists of a single user entity that identifies the username associted with the shadow file.

< shadow_state >

The shadows_state element defines the different information associated with the system shadow file. Please
refer to the individual elements in the schema for more details about what each represents.

module_name oval-def:EntityStateStringType 0 1

module_type oval-def:EntityStateStringType 0 1

release oval-def:EntityStateStringType 0 1

level oval-def:EntityStateStringType 0 1

branch oval-def:EntityStateStringType 0 1

sequence oval-def:EntityStateStringType 0 1

what_string oval-def:EntityStateStringType 0 1

Child Elements Type MinOccurs MaxOccurs

object oval-def:ObjectRefType 1 1

state oval-def:StateRefType 0 1

Child Elements Type MinOccurs MaxOccurs

username oval-def:EntityObjectStringType 1 1

< uname_test >

The uname test reveals information about the hardware the machine is running on. This information is the
parsed equivalent of uname -a. For example: "Linux quark 2.6.5-7.108-default #1 Wed Aug 25 13:34:40 UTC
2004 i686 i686 i386 GNU/Linux" or "Darwin TestHost 7.7.0 Darwin Kernel Version 7.7.0: Sun Nov 7 16:06:51
PST 2004; root:xnu/xnu-517.9.5.obj~1/RELEASE_PPC Power Macintosh powerpc". It extends the standard
TestType as defined in the oval-definitions-schema and one should refer to the TestType description for more
information. The required object element references a uname_object and the optional state element specifies the
metadata to check. The evaluation of the test is guided by the check attribute that is inherited from the
TestType.

< uname_object >

The uname_object element is used by an uname test to define those objects to evaluated based on a specified
state. There is actually only one object relating to uname and this is the system as a whole. Therefore, there are
no child entities defined. Any OVAL Test written to check uname will reference the same uname_object which
is basically an empty object element.

< uname_state >

The uname_state element defines the information about the hardware the machine is running one. Please refer
to the individual elements in the schema for more details about what each represents.

Child Elements Type MinOccurs MaxOccurs

username oval-def:EntityStateStringType 0 1

password oval-def:EntityStateStringType 0 1

chg_lst oval-def:EntityStateStringType 0 1

chg_allow oval-def:EntityStateStringType 0 1

chg_req oval-def:EntityStateStringType 0 1

exp_warn oval-def:EntityStateStringType 0 1

exp_inact oval-def:EntityStateStringType 0 1

exp_date oval-def:EntityStateStringType 0 1

flag oval-def:EntityStateStringType 0 1

Child Elements Type MinOccurs MaxOccurs

object oval-def:ObjectRefType 1 1

state oval-def:StateRefType 0 1

< xinetd_test >

The xinetd test is used to check information associated with different Internet services. It extends the standard
TestType as defined in the oval-definitions-schema and one should refer to the TestType description for more
information. The required object element references an inetd_object and the optional state element specifies the
information to check. The evaluation of the test is guided by the check attribute that is inherited from the
TestType.

< xinetd_object >

The xinetd_object element is used by an xinetd test to define the specific protocol-service to be evaluated. Each
object extends the standard ObjectType as definied in the oval-definitions-schema and one should refer to the
ObjectType description for more information. The common set element allows complex objects to be created
using filters and set logic. Again, please refer to the description of the set element in the oval-definitions-
schema.

An xinetd object consists of a protocol entity and a service_name entity that identifies the specific service to be
tested.

< xinetd_state >

Child Elements Type MinOccurs MaxOccurs

machine_class oval-def:EntityStateStringType 0 1

node_name oval-def:EntityStateStringType 0 1

os_name oval-def:EntityStateStringType 0 1

os_release oval-def:EntityStateStringType 0 1

os_version oval-def:EntityStateStringType 0 1

processor_type oval-def:EntityStateStringType 0 1

Child Elements Type MinOccurs MaxOccurs

object oval-def:ObjectRefType 1 1

state oval-def:StateRefType 0 1

Child Elements Type MinOccurs MaxOccurs

protocol oval-def:EntityObjectStringType 1 1

service_name oval-def:EntityObjectStringType 1 1

The xinetd_state element defines the different information associated with a specific Internet service. Please
refer to the individual elements in the schema for more details about what each represents.

== EntityStateEndpointType ==

The EntityStateEndpointType complex type restricts a string value to a specific set of values that describe
endpoint types associated with an Internet service. The empty string is also allowed to support empty emlement
associated with variable references.

== EntityXinetdTypeStatusType ==

The EntityXinetdTypeStatusType complex type restricts a string value to three values, either RPC,

Child Elements Type MinOccurs MaxOccurs

protocol oval-def:EntityStateStringType 0 1

service_name oval-def:EntityStateStringType 0 1

flags oval-def:EntityStateStringType 0 1

no_access oval-def:EntityStateStringType 0 1

only_from oval-def:EntityStateStringType 0 1

port oval-def:EntityStateStringType 0 1

server oval-def:EntityStateStringType 0 1

server_arguments oval-def:EntityStateStringType 0 1

socket_type oval-def:EntityStateStringType 0 1

type unix-def:EntityXinetdTypeStatusType 0 1

user oval-def:EntityStateStringType 0 1

wait oval-def:EntityStateBoolType 0 1

disabled oval-def:EntityStateBoolType 0 1

Value Description

stream for a stream socket

dgram for a datagram socket

raw for a raw socket

seqpacket for a sequenced packet socket

tli for all TLI endpoints

INTERNAL, or UNLISTED that specify the type of service registered in xinetd. The empty string is also
allowed to support empty emlement associated with error conditions.

== EntityStateWaitStatusType ==

The EntityStateWaitStatusType complex type restricts a string value to two values, either wait or nowait, that
specify whether the server that is invoked by inetd will take over the listening socket associated with the
service, and whether once launched, inetd will wait for that server to exit, if ever, before it resumes listening for
new service requests. The empty string is also allowed to support empty emlement associated with variable
references.

Value Description

INTERNAL The INTERNAL type is used to describe services like
echo, chargen, and others whose functionality is supplied
by xinetd itself.

RPC The RPC type is used to describe services that use
remote procedure call ala NFS.

UNLISTED The UNLISTED type is used to describe services that
aren't listed in /etc/protocols or /etc/rpc.

Value Description

wait The value of 'wait' specifies that the server that is
invoked by inetd will take over the listening socket
associated with the service, and once launched, inetd will
wait for that server to exit, if ever, before it resumes
listening for new service requests.

nowait The value of 'nowait' specifies that the server that is
invoked by inetd will not wait for any existing server to
finish before taking over the listening socket associated
with the service.

