
- Open Vulnerability and Assessment Language -

Element Dictionary

� Schema: Core Common
� Version: 5.3
� Release Date: 6/22/2007 11:18:05 AM

The following is a description of the common types that are shared across the different schemas within Open
Vulnerability and Assessment Language (OVAL). Each type is described in detail and should provide the
information necessary to understand what each represents. This document is intended for developers and
assumes some familiarity with XML. A high level description of the interaction between these type is not
outlined here.

The OVAL Schema is maintained by The MITRE Corporation and developed by the public OVAL Community.
For more information, including how to get involved in the project and how to submit change requests, please
visit the OVAL website at http://oval.mitre.org.

== GeneratorType ==

The GeneratorType complex type defines an element that is used to hold information about when a particular
OVAL document was compiled, what version of the schema was used, waht tool compiled the document, and
what version of that tools was used..

Additional generator information is also allowed although it is not part of the official OVAL Schema.
Individual organizations can place generator information that they feel are important and these will be skipped
during the validation. All OVAL really cares about is that the stated generator information is there.

== MessageType ==

The MessageType complex type defines the structure for which messages are relayed from the data collection
engine. Each message is a text string that has an associated level attribute identifying the type of message being
sent. These messages could be error messages, warning messages, debug messages, etc. How the messages are
used by tools and whether or not they are displayed to the user is up to the specific implementation. Please refer
to the description of the MessageLevelEnumeration for more information about each type of message.

Child Elements Type MinOccurs MaxOccurs

product_name xsd:string 0 1

product_version xsd:string 0 1

schema_version xsd:decimal 1 1

timestamp xsd:dateTime 1 1

Attributes:

-- CheckEnumeration --

The CheckEnumeration simple type defines acceptable check values, which are used to determine the final
result of something based on the results of individual components. When used to define the relationship
between objects and states, each check value defines how many of the matching objects must satisfy the given
state for the test to return true. When used to define the relationship between instances of a given entity, the
different check values defines how many instances must be true for the entity to return true. When used to
define the relationship between entities and multiple variable values, each check value defines how many
variable values must be true for the entity to return true.

Below are some tables that outline how each check attribute effects evaluation. The far left column identifies
the check attribute in question. The middle column specifies the different combinations of individual results that
the check attribute may bind together. (T=true, F=false, E=error, U=unknown, NE=not evaluated, NA=not
applicable) For example, a 1+ under T means that one or more individual results are true, while a 0 under U
means that zero individual results are unknown. The last column specifies what the final result would be
according to each combination of individual results. Note that if the individual test is negated, then a true result
is false and a false result is true, all other results stay as is.

- level oval:MessageLevelEnumeration (optional -- default='info')

Simple Content xsd:string

Value Description

all A value of 'all' means that a final result of true is given if
all the individual results are true.

at least one A value of 'at least one' means that a final result of true is
given if at least one of the individual results is true.

none exist A value of 'none exists' means that a test evaluates to true
if no matching object exists that satisfy the data
requirements.

DEPRECATED: this value has been deprecated and will
be removed with the next major version of the language.
One should use the other possible values in addition to
the existance attributes instead of the 'none exist' value
here.

none satisfy A value of 'none satisfy' means that a final result of true
is given if none the individual results are true.

only one A value of 'only one' means that a final result of true is
given if one and only one of the individual results are
true.

-- DatatypeEnumeration --

 || num of individual results ||

 check attr is || || final result is

 || T | F | E | U | NE | NA ||

---------------||-----------------------------||------------------

 || 1+ | 0 | 0 | 0 | 0 | 0+ || True

 || 0+ | 0+ | 0+ | 0+ | 0+ | 0+ || False
 ALL || 0+ | 0 | 1+ | 0+ | 0+ | 0+ || Error

 || 0+ | 0 | 0 | 1+ | 0+ | 0+ || Unknown

 || 0+ | 0 | 0 | 0 | 1+ | 0+ || Not Evaluated

 || 0 | 0 | 0 | 0 | 0 | 1+ || Not Applicable

---------------||-----------------------------||------------------

 || num of individual results ||

 check attr is || || final result is

 || T | F | E | U | NE | NA ||

---------------||-----------------------------||------------------

 || 1+ | 0+ | 0+ | 0+ | 0+ | 0+ || True
 || 0 | 0+ | 0 | 0 | 0 | 0+ || False

 AT LEAST ONE || 0 | 0+ | 1+ | 0+ | 0+ | 0+ || Error
 || 0 | 0+ | 0 | 1+ | 0+ | 0+ || Unknown

 || 0 | 0+ | 0 | 0 | 1+ | 0+ || Not Evaluated
 || 0 | 0 | 0 | 0 | 0 | 1+ || Not Applicable

---------------||-----------------------------||------------------

 || num of individual results ||
 check attr is || || final result is

 || T | F | E | U | NE | NA ||
---------------||-----------------------------||------------------

 || 1 | 0+ | 0 | 0 | 0 | 0+ || True
 || 2+ | 0+ | 0+ | 0+ | 0+ | 0+ || ** False **
 || 0 | 0+ | 0 | 0 | 0 | 0+ || ** False **

 ONLY ONE ||0,1 | 0+ | 1+ | 0+ | 0+ | 0+ || Error
 ||0,1 | 0+ | 0 | 1+ | 0+ | 0+ || Unknown

 ||0,1 | 0+ | 0 | 0 | 1+ | 0+ || Not Evaluated
 || 0 | 0 | 0 | 0 | 0 | 1+ || Not Applicable

---------------||-----------------------------||------------------

 || num of individual results ||

 check attr is || || final result is

 || T | F | E | U | NE | NA ||
---------------||-----------------------------||------------------

 || 0 | 0+ | 0 | 0 | 0 | 0+ || True
 || 1+ | 0+ | 0+ | 0+ | 0+ | 0+ || False

 NONE SATISFY || 0 | 0+ | 1+ | 0+ | 0+ | 0+ || Error

 || 0 | 0+ | 0 | 1+ | 0+ | 0+ || Unknown

 || 0 | 0+ | 0 | 0 | 1+ | 0+ || Not Evaluated

 || 0 | 0 | 0 | 0 | 0 | 1+ || Not Applicable
---------------||-----------------------------||------------------

The DatatypeEnumeration simple type defines the legal datatypes that are used to describe the values of
individual entities. A value should be interpreted according to the specified type. This is most important during
comparisons. For example, is '21' less than '123'? will evaluate to true if the datatypes are 'int', but will evaluate
to 'false' if the datatypes are 'string'. Another example is applying the 'equal' operation to '1.0.0.0' and '1.0'. With
datatype 'string' they are not equal, with datatype 'version' they are.

Value Description

binary The binary datatype is used to represent data that is in
raw (non-printable) form. Values should be hex strings.
Expected operations within OVAL for binary values are
'equals' and 'not equals'.

boolean The boolean datatype represent standard boolean data,
either true or false. Expected operations within OVAL
for boolean values are 'equals' and 'not equals'.

evr_string The evr_string datatype represents the epoch, version,
and release fields as a single version string. It has the
form "EPOCH:VERSION-RELEASE". Comparisons
involving this datatype should follow the algorithm of
librpm's rpmvercmp() function. Expected operations
within OVAL for evr_string values are 'equals', 'not
equals', 'greater than', 'greater than or equal', 'less than',
and 'less than or equal'.

float The float datatype describes standard float data.
Expected operations within OVAL for float values are
'equals', 'not equals', 'greater than', 'greater than or equal',
'less than', and 'less than or equal'.

ios_version The ios_version datatype describes Cisco IOS Train
strings. These are in essence version strings for IOS.
Please refer to Cisco's IOS Reference Guide for
information on how to compare different Trains as they
follow a very specific pattern. Expected operations
within OVAL for ios_version values are 'equals', 'not
equals', 'greater than', 'greater than or equal', 'less than',
and 'less than or equal'.

int The int datatype describes standard integer data.
Expected operations within OVAL for int values are
'equals', 'not equals', 'greater than', 'greater than or equal',
'less than', 'less than or equal', 'bitwise and', and 'bitwise
or'.

string The string datatype describes standard string data.
Expected operations within OVAL for string values are
'equals', 'not equals', 'pattern match'.

version
The version datatype represents a value that is a
hierarchical list of non-negative integers separated by a
single character delimiter. Expected operations within
OVAL for version values are 'equals', 'not equals',
'greater than', 'greater than or equal', 'less than', and 'less

-- ExistenceEnumeration --

The ExistenceEnumeration simple type defines acceptable existence values, which are used to determine a
result based on the existence of individual components. The main use for this is for a test regarding the
existence of objects on the system.

than or equal'.

For example '#.#.#' or '#-#-#-#' where the numbers to the
left are more significant than the numbers to the right.
When performing an 'equals' operation on a version
datatype, you should first check the left most number for
equality. If that fails, then the values are not equal. If it
succeeds, then check the second left most number for
equality. Continue checking the numbers from left to
right until the last number has been checked. If, after
testing all the previous numbers, the last number is equal
then the two versions are equal. When performing other
operations, such as 'less than', 'less than or equal', 'greater
than, or 'greater than or equal', similar logic as above is
used. Start with the left most number and move from left
to right. For each number, check if it is less than the
number you are testing against. If it is, then the version in
question is less than the version you are testing against. If
the number is equal, then move to check the next number
to the right. For example, to test if 5.7.23 is less than or
equal to 5.8.0 you first compare 5 to 5. They are equal so
you move on to compare 7 to 8. 7 is less than 8 so the
entire test succeeds and 5.7.23 is 'less than or equal' to
5.8.0. The difference between the 'less than' and 'less than
or equal' operations is how the last number is handled. If
the last number is reached, the check should use the
given operation (either 'less than' and 'less than or equal')
to test the number. For example, to test if 4.23.6 is
greater than 4.23.6 you first compare 4 to 4. They are
equal so you move on to compare 23 to 23. They are
equal so you move on to compare 6 to 6. This is the last
number in the version and since 6 is not greater than 6,
the entire test fails and 4.23.6 is not greater than 4.23.6.

Version strings with a different number of components
shall be padded with zeros to make them the same size.
For example, if the version strings '1.2.3' and '6.7.8.9' are
being compared, then the short one should be padded to
become '1.2.3.0'.

Value Description

all_exist A value of 'all_exist' means that every object defined by
the description exists on the system.

Below are some tables that outline how each ExistenceEnumeration value effects evaluation. The far left
column identifies the ExistenceEnumeration value in question. The middle column specifies the different
combinations of individual item status flags that the attribute may bind together. (EX=exists, DE=does not
exist, ER=error, NC=not collected) For example, a 1+ under EX means that one or more individual item flags
are set to exists, while a 0 under NC means that zero individual item flags are set to not collected. The last
column specifies what the final result would be according to each combination of individual item flags. Note
that if the individual test is negated, then a true result is false and a false result is true, all other results stay as is.

any_exist A value of 'any_exist' means that zero or more objects
defined by the description exist on the system.

at_least_one_exists A value of 'at_least_one_exists' means that at least one
object defined by the description exists on the system.

none_exist A value of 'none_exist' means that none of the objects
defined by the description exist on the system.

only_one_exists A value of 'only_one_exists' means that only one object
defined by the description exists on the system.

 || item status value count ||
 attr value || || final result is
 || EX | DE | ER | NC ||

---------------||---------------------------||------------------
 || 1+ | 0 | 0 | 0 || True

 || 0+ | 1+ | 0+ | 0+ || False
 all_exist || 0+ | 0 | 1+ | 0+ || Error

 || 0+ | 0 | 0 | 1+ || Unknown
 || -- | -- | -- | -- || Not Evaluated
 || -- | -- | -- | -- || Not Applicable

---------------||---------------------------||------------------

 || item status value count ||
 attr value || || final result is

 || EX | DE | ER | NC ||

---------------||---------------------------||------------------
 || 0+ | 0+ | 0 | 0+ || True

 || -- | -- | -- | -- || False

 any || 0 | 0 | 1+ | 0 || Error
 || -- | -- | -- | -- || Unknown

 || -- | -- | -- | -- || Not Evaluated

 || -- | -- | -- | -- || Not Applicable

---------------||---------------------------||------------------

 || item status value count ||
 attr value || || final result is

 || EX | DE | ER | NC ||

---------------||---------------------------||------------------

 || 1+ | 0+ | 0+ | 0+ || True

-- FamilyEnumeration --

The FamilyEnumeration simple type is a listing of families that OVAL supports at this time.

-- MessageLevelEnumeration --

 || 0 | 1+ | 0 | 0 || False

 at_least_one || 0 | 0+ | 1+ | 0+ || Error

 || 0 | 0+ | 0 | 1+ || Unknown

 || -- | -- | -- | -- || Not Evaluated

 || -- | -- | -- | -- || Not Applicable

---------------||---------------------------||------------------

 || item status value count ||

 attr value || || final result is

 || EX | DE | ER | NC ||

---------------||---------------------------||------------------

 || 0 | 0+ | 0 | 0 || True

 || 1+ | 0+ | 0+ | 0+ || False

 none || 0 | 0+ | 1+ | 0+ || Error

 || 0 | 0+ | 0 | 1+ || Unknown

 || -- | -- | -- | -- || Not Evaluated

 || -- | -- | -- | -- || Not Applicable
---------------||---------------------------||------------------

 || item status value count ||
 attr value || || final result is

 || EX | DE | ER | NC ||
---------------||---------------------------||------------------

 || 1 | 0+ | 0 | 0 || True
 || 2+ | 0+ | 0+ | 0+ || False
 || 0 | 0+ | 0 | 0 || False

 only_one || 0,2+ | 0+ | 1+ | 0+ || Error
 || 0,2+ | 0+ | 0 | 1+ || Unknown

 || -- | -- | -- | -- || Not Evaluated
 || -- | -- | -- | -- || Not Applicable
---------------||---------------------------||------------------

Value Description

ios

macos

unix

windows

The MessageLevelEnumeration simple type defines the different levels associated with a message. There is no
specific criteria about which messages get assigned which level. This is completely arbitrary and up to the
content producer to decide what is an error message and what is a debug message.

-- OperationEnumeration --

The OperationEnumeration simple type defines acceptable operations. Each operation defines how to compare
entities against their actual values.

Value Description

debug Debug messages should only be displayed by a tool when
run in some sort of verbose mode.

error Error messages should be recorded when there was an
error that did not allow the collection of specific data.

fatal A fatal message should be recorded when an error causes
the failure of more than just a single piece of data.

info Info messages are used to pass useful information about
the data collection to a user.

warning A warning message reports something that might not
correct but information was still collected.

Value Description

equals The 'equals' operation returns true if the actual value on
the system is equal to the stated entity.

not equal The 'not equal' operation returns true if the actual value
on the system is not equal to the stated entity.

greater than The 'greater than' operation returns true if the actual
value on the system is greater than the stated entity.

less than The 'less than' operation returns true if the actual value
on the system is less than the stated entity.

greater than or equal The 'greater than or equal' operation returns true if the
actual value on the system is greater than or equal to the
stated entity.

less than or equal The 'less than or equal' operation returns true if the actual
value on the system is less than or equal to the stated
entity.

bitwise and The 'bitwise and' operation is used to determine if a
specific bit is set. It returns true if performing a
BITWISE AND with the binary representation of the
stated entity against the binary representation of the
actual value on the system results in a binary value that is
equal to the binary representation of the stated entity. For
example, assuming a datatype of 'int', if the actual integer

-- OperatorEnumeration --

The OperatorEnumeration simple type defines acceptable operators. Each operator defines how to evaluate
multiple arguments.

value of the setting on your machine is 6 (same as 0110
in binary), then performing a 'bitwise and' with the stated
integer 4 (0100) returns 4 (0100). Since the result is the
same as the state mask, then the test returns true. If the
actual value on your machine is 1 (0001), then the
'bitwise and' with the stated integer 4 (0100) returns 0
(0000). Since the result is not the same as the stated
mask, then the test fails.

bitwise or The 'bitwise or' operation is used to determine if a
specific bit is not set. It returns true if performing a
BITWISE OR with the binary representation of the stated
entity against the binary representation of the actual
value on the system results in a binary value that is equal
to the binary representation of the stated entity. For
example, assuming a datatype of 'int', if the actual integer
value of the setting on your machine is 6 (same as 0110
in binary), then performing a 'bitwise or' with the stated
integer 14 (1110) returns 14 (1110). Since the result is
the same as the state mask, then the test returns true. If
the actual value on your machine is 1 (0001), then the
'bitwise or' with the stated integer 14 (1110) returns 15
(1111). Since the result is not the same as the stated
mask, then the test fails.

pattern match The 'pattern match' operation allows an item to be tested
against a regular expression. When used by an entity in
an OVAL Object, the regular expression represents the
set of matching objects on the system. Patterns must
comply with POSIX std 1003.2-1992, Section 2.8 -
'Regular Expression Notation'. Patterns can use both
Basic and Extended Regular Expression notation.

Value Description

AND The AND operator produces a true result if every
argument is true. If one or more arguments are false, the
result of the AND is false. If one or more of the
arguments are unknown, and if none of the arguments are
false, then the AND operator produces a result of
unknown.

ONE
The ONE operator produces a true result if one and only
one argument is true. If there are more than argument is
true (or if there are no true arguements), the result of the
ONE is false. If one or more of the arguments are
unknown, then the ONE operator produces a result of

Below are some tables that outline how each operator effects evaluation. The far left column identifies the
operator in question. The middle column specifies the different combinations of individual results that the
operator may bind together. (T=true, F=false, E=error, U=unknown, NE=not evaluated, NA=not applicable) For
example, a 1+ under T means that one or more individual results are true, while a 0 under U means that zero
individual results are unknown. The last column specifies what the final result would be according to each
combination of individual results. Note that if the individual test is negated, then a true result is false and a false
result is true, all other results stay as is.

unknown.

OR The OR operator produces a true result if one or more
arguments is true. If every argument is false, the result of
the OR is false. If one or more of the arguments are
unknown and if none of arguments are true, then the OR
operator produces a result of unknown.

XOR XOR is defined to be true if an odd number of its
arguments are true, and false otherwise. If any of the
arguments are unknown, then the XOR operator
produces a result of unknown.

 || num of individual results ||

 operator is || || final result is
 || T | F | E | U | NE | NA ||
---------------||-----------------------------||------------------

 || 1+ | 0 | 0 | 0 | 0 | 0+ || True
 || 0+ | 1+ | 0+ | 0+ | 0+ | 0+ || False

 AND || 0+ | 0 | 1+ | 0+ | 0+ | 0+ || Error
 || 0+ | 0 | 0 | 1+ | 0+ | 0+ || Unknown
 || 0+ | 0 | 0 | 0 | 1+ | 0+ || Not Evaluated

 || 0 | 0 | 0 | 0 | 0 | 1+ || Not Applicable
---------------||-----------------------------||------------------

 || num of individual results ||
 operator is || || final result is

 || T | F | E | U | NE | NA ||
---------------||-----------------------------||------------------
 || 1 | 0+ | 0 | 0 | 0 | 0+ || True

 || 2+ | 0+ | 0+ | 0+ | 0+ | 0+ || ** False **

 || 0 | 0+ | 0 | 0 | 0 | 0+ || ** False **

 ONE ||0,1 | 0+ | 1+ | 0+ | 0+ | 0+ || Error
 ||0,1 | 0+ | 0 | 1+ | 0+ | 0+ || Unknown

 ||0,1 | 0+ | 0 | 0 | 1+ | 0+ || Not Evaluated

 || 0 | 0 | 0 | 0 | 0 | 1+ || Not Applicable

---------------||-----------------------------||------------------

 || num of individual results ||

 operator is || || final result is

 || T | F | E | U | NE | NA ||

---------------||-----------------------------||------------------

-- DefinitionIDPattern --

Define the format for acceptable OVAL Definition ids. An urn format is used with the id starting with the word
oval followed by a unique string, followed by the three letter code 'def', and ending with an integer.

oval:[A-Za-z0-9_\-\.]+:def:[1-9][0-9]*

-- ObjectIDPattern --

Define the format for acceptable OVAL Object ids. An urn format is used with the id starting with the word
oval followed by a unique string, followed by the three letter code 'obj', and ending with an integer.

oval:[A-Za-z0-9_\-\.]+:obj:[1-9][0-9]*

-- StateIDPattern --

Define the format for acceptable OVAL State ids. An urn format is used with the id starting with the word oval
followed by a unique string, followed by the three letter code 'ste', and ending with an integer.

oval:[A-Za-z0-9_\-\.]+:ste:[1-9][0-9]*

-- TestIDPattern --

 || 1+ | 0+ | 0+ | 0+ | 0+ | 0+ || True

 || 0 | 1+ | 0 | 0 | 0 | 0+ || False

 OR || 0 | 0+ | 1+ | 0+ | 0+ | 0+ || Error

 || 0 | 0+ | 0 | 1+ | 0+ | 0+ || Unknown

 || 0 | 0+ | 0 | 0 | 1+ | 0+ || Not Evaluated

 || 0 | 0 | 0 | 0 | 0 | 1+ || Not Applicable

---------------||-----------------------------||------------------

 || num of individual results ||

 operator is || || final result is

 || T | F | E | U | NE | NA ||

---------------||-----------------------------||------------------
 ||odd | 0+ | 0 | 0 | 0 | 0+ || True

 ||even| 0+ | 0 | 0 | 0 | 0+ || False

 XOR || 0+ | 0+ | 1+ | 0+ | 0+ | 0+ || Error

 || 0+ | 0+ | 0 | 1+ | 0+ | 0+ || Unknown

 || 0+ | 0+ | 0 | 0 | 1+ | 0+ || Not Evaluated
 || 0 | 0 | 0 | 0 | 0 | 1+ || Not Applicable

---------------||-----------------------------||------------------

Define the format for acceptable OVAL Test ids. An urn format is used with the id starting with the word oval
followed by a unique string, followed by the three letter code 'tst', and ending with an integer.

oval:[A-Za-z0-9_\-\.]+:tst:[1-9][0-9]*

-- VariableIDPattern --

Define the format for acceptable OVAL Variable ids. An urn format is used with the id starting with the word
oval followed by a unique string, followed by the three letter code 'var', and ending with an integer.

oval:[A-Za-z0-9_\-\.]+:var:[1-9][0-9]*

-- ItemIDPattern --

Define the format for acceptable OVAL Item ids. The format is an integer. An item id is used to identify the
different items found in an OVAL System Characteristics file.

-- EmptyStringType --

The EmptyStringType simple type is a restriction of the built-in string simpleType. The only allowed string is
the empty string with a length of zero. This type is used by certain elements to allow empty content when non-
string data is accepted. See the EntityIntType in the OVAL Definition Schema for an example of its use.

-- NonEmptyStringType --

The NonEmptyStringType simple type is a restriction of the built-in string simpleType. Empty strings are not
allowed. This type is used by comment attributes where an empty value is not allowed.

