
- Open Vulnerability and Assessment Language -
Element Dictionary

� Schema: Core Definition
� Version: 5.1
� Release Date: 6 November 2006

The following is a description of the elements, types, and attributes that compose the core schema for encoding
Open Vulnerability and Assessment Language (OVAL) Definitions. Some of the objects defined here are
extended and enhanced by individual component schemas, which are described in separate documents. Each of
the elements, types, and attributes that make up the Core Definition Schema are described in detail and should
provide the information necessary to understand what each represents. This document is intended for developers
and assumes some familiarity with XML. A high level description of the interaction between these objects is
not outlined here.

The OVAL Schema is maintained by The MITRE Corporation and developed by the public OVAL Community.
For more information, including how to get involved in the project and how to submit change requests, please
visit the OVAL website at http://oval.mitre.org.

< oval_definitions >

The oval_definitions element is the root of an OVAL Definition Document. Its purpose is to bind together the
major sections of a document - generator, definitions, tests, objects, states, and variables - which are the
children of the root element. The generator section must be present and provides information about when the
definition file was compiled and under what version. The optional definitions, tests, objects, states, and
variables sections define the specific characteristics that should be evaluated on a system to determine the truth
values of the OVAL Definition Document. To be valid though, at least one definitions, tests, objects, states, or
variables element must be present. The optional Signature element allows an XML Signature as defined by the
W3C to be attached to the document. This allows authentication and data integrity to be provided to the user.
Enveloped signatures are supported. More information about the official W3C Recommendation regarding
XML digital signatures can be found at http://www.w3.org/TR/xmldsig-core/.

Child Elements Type MinOccurs MaxOccurs

generator oval:GeneratorType 1 1

definitions oval-def:DefinitionsType 0 1

tests oval-def:TestsType 0 1

objects oval-def:ObjectsType 0 1

states oval-def:StatesType 0 1

variables oval-def:VariablesType 0 1

ds:Signature n/a 0 1

== DefinitionsType ==

The DefinitionsType complex type is a container for one or more definition elements. Each definition element
describes a single OVAL Definition. Please refer to the description of the DefinitionType for more information
about an individual definition.

== DefinitionType ==

The DefinitionType defines a single OVAL Definition. A definition is the key structure in OVAL. It is
analogous to the logical sentence or proposition: if a computer's state matches the configuration parameters laid
out in the criteria, then that computer exhibits the state described. The DefinitionType contains a section for
various metadata related elements that describe the definition. This includes a description, version, affected
system types, and reference information. The notes section of a definition should be used to hold information
that might be helpful to someone examining the technical aspects of the definition. For example, why certain
tests have been included in the criteria, or maybe a link to where further information can be found. The
DefinitionType also (unless the definition is deprecated) contains a criteria child element that joins individual
tests together with a logical operator to specify the specific computer state being described.

The required id attribute is the OVAL-ID of the Definition. The form of an OVAL-ID must follow the specific
format described by the definitionidPattern. The required version attribute holds the current version of the
definition. Versions are integers, starting at 1 and incrementing every time a definition is modified. The
required class attribute indicates the specific class to which the definition belongs. See the definition of
classEnumeration for more information about the different valid classes. The optional deprecated attribute
signifies that an id is no longer to be used or referenced but the information has been kept around for historic
purposes.

== MetadataType ==

Child Elements Type MinOccurs MaxOccurs

definition oval-def:DefinitionType 1 unbounded

Attributes:

- id oval:DefinitionIDPattern (required)

- version xsd:integer (required)

- class oval-def:ClassEnumeration (required)

- deprecated xsd:boolean (optional -- default='false')

Child Elements Type MinOccurs MaxOccurs

ds:Signature n/a 0 1

metadata oval-def:MetadataType 1 1

notes oval-def:NotesType 0 1

criteria oval-def:CriteriaType 0 1

The MetadataType complex type contains all the metadata available to an OVAL Definition. This metadata is
for informational purposes only and is not part of the criteria used to evaluate machine state. The required title
child element holds a short string that is used to quickly identify the definition to a human user. The affected
metadata item contains information about the system(s) for which the definition has been written. Remember
that this is just metadata and not part of the criteria. Please refer to the AffectedType description for more
information. The required description element contains a textual description of the configuration state being
addressed by the OVAL Definition. In the case of a definition from the vulnerability class, the reference is
usually the Common Vulnerability and Exposures (CVE) Identifier, and this description field corresponds with
the CVE description.

Additional metadata is also allowed although it is not part of the official OVAL Schema. Individual
organizations can place metadata items that they feel are important and these will be skipped during the
validation. All OVAL really cares about is that the stated metadata items are there.

== AffectedType ==

Each OVAL Definition is written to evaluate a certain type of system(s). The family, platform(s), and product
(s) of this target are described by the AffectedType whose main purpose is to provide hints for tools using
OVAL Definitions. For instance, to help a reporting tool only use Windows definitions, or to pre-select only
Red Hat definitions to be evaluated. Note, the inclusion of a particular platform or product does not mean the
definition is physically checking for the existence of the platform or product. For the actual test to be
performed, the correct test must still be included in the definition's criteria section.

The AffectedType complex type details the specific system, application, subsystem, library, etc. for which a
definition has been written. If a definition is not tied to a specific product, then this element should not be
included. The absence of the platform or product element can be thought of as definition applying to all
platforms or products. The inclusion of a particular platform or product does not mean the definition is
physically checking for the existence of the platform or product. For the actual test to be performed, the correct
test must still be included in the definition's criteria section. To increase the utility of this element, care should
be taken when assigning and using strings for product names. The schema places no restrictions on the values
that can be assigned, potentially leading to many different representations of the same value. For example
'Internet Explorer' and 'IE'. The current convention is to fully spell out all terms, and avoid the use of
abbreviations at all costs.

Child Elements Type MinOccurs MaxOccurs

title xsd:string 1 1

affected oval-def:AffectedType 0 unbounded

reference oval-def:ReferenceType 0 unbounded

description xsd:string 1 1

Attributes:

- family oval:FamilyEnumeration (required)

Child Elements Type MinOccurs MaxOccurs

platform xsd:string 0 unbounded

product xsd:string 0 unbounded

== ReferenceType ==

The ReferenceType complex type links the OVAL Definition to a definitive external reference. For example,
CVE Identifiers for vulnerabilities. The intended purpose for this reference is to link the definition to a variety
of other sources that address the same issue being specified by the OVAL Definition.

The required source attribute specifies where the reference is coming from. In other words, it identifies the
reference repository being used. The required ref_id attribute is the external id of the reference. The optional
ref_url attribute is the URL to the reference.

== NotesType ==

The NotesType complex type is a container for one or more note child elements. Each note contains some
information about the definition or tests that it references. A note may record an unresolved question about the
definition or test or present the reason as to why a particular approach was taken.

== CriteriaType ==

The CriteriaType complex type describes the high level container for all the tests and represents the meat of the
definition. Each criteria can contain other criteria elements in a recursive structure allowing complex logical
trees to be constructed. Each referenced test is represented by a criterion element. Please refer to the description
of the CriterionType for more information about and individual criterion element. The optional
extend_definition element allows existing definitions to be included in the criteria. Refer to the description of
the ExtendDefinitionType for more information.

The required operator attribute provides the logical operator that binds the different statements inside a criteria
together. The optional negate attribute signifies that the result of the criteria as a whole should be negated
during analysis. For example, consider a criteria that evaluates to TRUE if a certain software is installed. By
negating this test, it now evaluates to TRUE if the software is NOT installed. The optional comment attribute
provides a short description of the criteria.

Attributes:

- source xsd:string (required)

- ref_id xsd:string (required)

- ref_url xsd:anyURI (optional)

Child Elements Type MinOccurs MaxOccurs

note xsd:string 1 unbounded

Attributes:

- operator oval:OperatorEnumeration (optional -- default='AND')

- negate xsd:boolean (optional -- default='false')

- comment xsd:string (optional)

Child Elements Type MinOccurs MaxOccurs

== CriterionType ==

The CriterionType complex type identifies a specific test to be included in the definition's criteria.

The required test_ref attribute is the actual id of the test being referenced. The optional negate attribute signifies
that the result of an individual test should be negated during analysis. For example, consider a test that evaluates
to TRUE if a specific patch is installed. By negating this test, it now evaluates to TRUE if the patch is NOT
installed. The optional comment attribute provides a short description of the specified test and should mirror the
comment attribute of the actual test.

== ExtendDefinitionType ==

The ExtendDefinitionType complex type allows existing definitions to be extended by another definition. This
works by evaluating the extended definition and then using the result within the logical context of the extending
definition.

The required definition_ref attribute is the actual id of the definition being extended. The optional negate
attribute signifies that the result of an extended definition should be negated during analysis. For example,
consider a definition that evaluates TRUE if a certain software is installed. By negating the definition, it now
evaluates to TRUE if the software is NOT installed. The optional comment attribute provides a short description
of the specified definition and should mirror the title metadata of the extended definition.

== TestsType ==

The TestsType complex type is a container for one or more test child elements. Each test element describes a
single OVAL Test. Please refer to the description of the TestType for more information about an individual test.

criteria oval-def:CriteriaType

criterion oval-def:CriterionType

extend_definition oval-def:ExtendDefinitionType

Attributes:

- test_ref oval:TestIDPattern (required)

- negate xsd:boolean (optional -- default='false')

- comment xsd:string (optional)

Attributes:

- definition_ref oval:DefinitionIDPattern (required)

- negate xsd:boolean (optional -- default='false')

- comment xsd:string (optional)

Child Elements Type MinOccurs MaxOccurs

< test >

The test element is an abstract element that is meant to be extended (via substitution groups) by the tests found
in the component schemas. An actual test element is not valid. The use of this abstract class simplifies the
OVAL schema by allowing individual tests to inherit the optional notes child element, and the id and comment
attributes from the base TestType. Please refer to the description of the TestType complex type for more
information.

== TestType ==

The base type of every test includes an optional notes element and five attributes. The notes section of a test
should be used to hold information that might be helpful to someone examining the technical aspects of the test.
For example, why certain values have been used by the test, or maybe a link to where further information can be
found. Please refer to the description of the NotesType complex type for more information about the notes
element.

The required id attribute uniquely identifies each test, and must conform to the format specified by the
testidPattern simple type. The required version attribute holds the current version of the test. Versions are
integers, starting at 1 and incrementing every time a test is modified. The required check attribute determines
what group of objects to test. (For example: Should the test check that all files match a specified version or that
at least one file matches the specified version?) The valid check values are explained in the description of the
checkEnumeration simple type. The required comment attribute provides a short description of the test. The
optional deprecated attribute signifies that an id is no longer to be used or referenced but the information has
been kept around for historic purposes.

== ObjectRefType ==

The ObjectRefType complex type defines an object reference to be used by OVAL Tests that are defined in the
component schemas. The required object_ref attribute specifies the id of the OVAL Object being referenced.

oval-def:test n/a 1 unbounded

Attributes:

- id oval:TestIDPattern (required)

- version xsd:integer (required)

- check oval:CheckEnumeration (required)

- comment xsd:string (required)

- deprecated xsd:boolean (optional -- default='false')

Child Elements Type MinOccurs MaxOccurs

ds:Signature n/a 0 1

notes oval-def:NotesType 0 1

Attributes:

- object_ref oval:ObjectIDPattern (required)

== StateRefType ==

The StateRefType complex type defines a state reference to be used by OVAL Tests that are defined in the
component schemas. The required state_ref attribute specifies the id of the OVAL State being referenced.

== ObjectsType ==

The ObjectsType complex type is a container for one or more object child elements. Each object element
provides details that define a set of matching objects to be used by an OVAL Test. Please refer to the
description of the object element for more information about an individual object.

< object >

The object element is an abstract element that is meant to be extended (via substitution groups) by the objects
found in the component schemas. An actual object element is not valid. The use of this abstract class simplifies
the OVAL schema by allowing individual objects to inherit any common elements and attributes from the base
ObjectType. The optional notes child element, and the id and comment attributes from the base testType. A
description of the notes element can be found under the definitions section. Please refer to the description of the
ObjectType complex type for more information.

== ObjectType ==

The base type of every object includes an optional notes element. The notes element of an object should be used
to hold information that might be helpful to someone examining the technical aspects of the object. For
example, why certain values have been used, or maybe a link to where further information can be found. Please
refer to the description of the NotesType complex type for more information about the notes element.

The required id attribute uniquely identifies each object, and must conform to the format specified by the
objectidPattern simple type. The required version attribute holds the current version of the object element.
Versions are integers, starting at 1 and incrementing every time an object is modified. The optional comment
attribute provides a short description of the object. The optional deprecated attribute signifies that an id is no
longer to be used or referenced but the information has been kept around for historic purposes.

Attributes:

- state_ref oval:StateIDPattern (required)

Child Elements Type MinOccurs MaxOccurs

oval-def:object n/a 1 unbounded

Attributes:

- id oval:ObjectIDPattern (required)

- version xsd:integer (required)

< set >

The set element enables complex objects to be described. It is a recursive element in that each set element can
contain additional set elements as children. Each set element defines characteristics that produce a matching set
of objects. The possible characteristics are an object reference and a collection of filters. The object_reference
refers to an existing OVAL Object. The filter element provides a reference to an existing OVAL State. A filter
is used to eliminate certain object from the set. Each filter is applied to each OVAL Object before the
set_operator is applied. For example, if an object_reference points to an OVAL Object that is every file in a
certain directory, a filter might be set up to limit the object set to only those files with a size less than 10 KB. If
multiple filters are provided, then each filter is used separately against the defined object set. In other words, if
an object matches any of the supplied filters, then it is thrown out of the set.

The required set_operator attribute defines how different child sets are combined to form the overall set of
objects. For example, does one take the union of different sets or the intersection? For a description of the valid
values please refer to the SetOperatorEnumeration simple type.

== StatesType ==

The StatesType complex type is a container for one or more state child elements. Each state provides details
about specific characteristics that can be used during an evaluation of an object. Please refer to the description
of the state element for more information about an individual state.

< state >

- comment xsd:string (optional)

- deprecated xsd:boolean (optional -- default='false')

Child Elements Type MinOccurs MaxOccurs

ds:Signature n/a 0 1

notes oval-def:NotesType 0 1

Attributes:

- set_operator oval-def:SetOperatorEnumeration (optional -- default='UNION')

Child Elements Type MinOccurs MaxOccurs

object_reference oval:ObjectIDPattern 1 2

filter oval:StateIDPattern 0 unbounded

Child Elements Type MinOccurs MaxOccurs

oval-def:state n/a 1 unbounded

The state element is an abstract element that is meant to be extended (via substitution groups) by the states
found in the component schemas. An actual state element is not valid. The use of this abstract class simplifies
the OVAL schema by allowing individual states to inherit the optional notes child element, and the id and
operator attributes from the base StateType. Please refer to the description of the StateType complex type for
more information.

== StateType ==

The base type of every state includes an optional notes element and two attributes. The notes section of a state
should be used to hold information that might be helpful to someone examining the technical aspects of the
state. For example, why certain values have been used by the state, or maybe a link to where further information
can be found. Please refer to the description of the NotesType complex type for more information about the
notes element.

The required id attribute uniquely identifies each state, and must conform to the format specified by the
stateidPattern simple type. The required version attribute holds the current version of the state. Versions are
integers, starting at 1 and incrementing every time a state is modified. The required operator attribute provides
the logical operator that binds the different characteristics inside a state together. The optional comment
attribute provides a short description of the state. The optional deprecated attribute signifies that an id is no
longer to be used or referenced but the information has been kept around for historic purposes.

When evaluating a particular state against an object, one should evaluate each individual entity separately. The
individual results are then combined by the operator to produce an overall result. This process holds true even
when there are multiple instances of the same entity. Evaluate each instance separately, taking the entity check
attribute into account, and then combine everything using the operator.

== VariablesType ==

The VariablesType complex type is a container for one or more variable child elements. Each variable element
is a way to define one or more values to be obtained at the time a definition is evaluated.

Attributes:

- id oval:StateIDPattern (required)

- version xsd:integer (required)

- operator oval:OperatorEnumeration (optional -- default='AND')

- comment xsd:string (optional)

- deprecated xsd:boolean (optional -- default='false')

Child Elements Type MinOccurs MaxOccurs

ds:Signature n/a 0 1

notes oval-def:NotesType 0 1

Child Elements Type MinOccurs MaxOccurs

oval-def:variable n/a 1 unbounded

< variable >

The variable element is an abstract element that is meant to be extended (via substitution groups) by the
different types of variables. An actual variable element is not valid. The different variable types describe
different sources for obtaining a value(s) for the variable. There are currently three types of variables; local,
external, and constant. Please refer to the description of each one for more specific information. The value(s) of
a variable is treated as if it were inserted where referenced. One of the main benefits of variables is that they
allow tests to evaluate user-defined policy. For example, an OVAL Test might check to see if a password is at
least a certain number of characters long, but this number depends upon the individual policy of the user. To
solve this, the test for password length can be written to refer to a variable element that defines the length.

If a variable defines an array of values, any entity that references the variable will evaluate to true depending on
the value of the var_check attribute. For example, if an entity 'size' with an operation of 'less than' references a
variable that returns five different integers, and the var_check attribute has a value of 'all', then the 'size' entity
returns true only if the actual size is less than each of the five integers defined by the variable. If a variable does
not return any value, then an error should be thrown during OVAL analysis.

== VariableType ==

The VariableType complex type defines attributes associated with each OVAL Variable. The required id
attribute uniquely identifies each variable, and must conform to the format specified by the varidPattern simple
type. The required version attribute holds the current version of the variable. Versions are integers, starting at 1
and incrementing every time a variable is modified. The required datatype attribute specifies the type of value
being defined. The required comment attribute provides a short description of the variable. The optional
deprecated attribute signifies that an id is no longer to be used or referenced but the information has been kept
around for historic purposes.

< external_variable >

The external_variable element extends the VariableType and defines a variable with some external source. An
actual value(s) for the variable is not provided here as it is retrieved during the evaluation of the OVAL
Definition. An unbounded set of possible child elements can be specified that together specify the possible
values of an external variable. In other words, each value assigned by an external source must match one of the
possible values specified. Note that it is not necessary to declare a variable's possible value, but the option is
available if desired. If no possible child elements are specified, than the valid values are only bound to the
specified datatype. Please refer to the description of the PossibleType complex type for more information.

Attributes:

- id oval:VariableIDPattern (required)

- version xsd:integer (required)

- datatype oval:DatatypeEnumeration (required)

- comment xsd:string (required)

- deprecated xsd:boolean (optional -- default='false')

Child Elements Type MinOccurs MaxOccurs

ds:Signature n/a 0 1

== PossibleType ==

The PossibleType complex type outlines a possible expected value of an external variable. Each possible
element contains either an unbounded list of child possible elements further specifying possible values, or an
unbounded list of child restriction elements that specify any actual values. One can think of the possible
elements as an OR'd list of possible values, and the restriction elements as an AND'd list of value descriptions.
Please refer to the description of the RestrictionType complex type for more information.

== RestrictionType ==

The RestrictionType complex type outlines an actual expected value of an external variable. The required hint
attribute gives a short description of what the value means. The required operation attribute specifies how to
compare the actual value of the variable with the possible value. Please refer to the operationEnumeration
simple type for a description of the valid operations.

< constant_variable >

The constant_variable element extends the VariableType and defines a variable with a constant value(s). Each
constant_variable defines either a single value or an array of values to be used throughout the evaluation of the
OVAL Definition File in which it has been defined. Constant variables can not be over-ridden by an external
source. The actual value of a constant variable is defined by the required value child element. An array of
values can be specified by including multiple instances of the value element. Please refer to the description of
the ValueType complex type for more information.

== ValueType ==

Child Elements Type MinOccurs MaxOccurs

possible oval-def:PossibleType 0 unbounded

Child Elements Type MinOccurs MaxOccurs

possible oval-def:PossibleType 0 unbounded

restriction oval-def:RestrictionType 0 unbounded

Attributes:

- hint xsd:string (required)

- operation oval:OperationEnumeration (required)

Simple Content xsd:anySimpleType

Child Elements Type MinOccurs MaxOccurs

value oval-def:ValueType 1 unbounded

The ValueType complex type holds the actual value of the variable when dealing with a constant variable. This
value should be used by all tests that reference this variable. The value can not be over-ridden by an external
source.

< local_variable >

The local_variable element extends the VariableType and defines a variable with some local source. The actual
value(s) for the variable is not provided in the OVAL Definition document but rather it is retrieved during the
evaluation of the OVAL Definition. A value can be as simple as a literal string or as complex as multiple
registry keys concatenated together. Each local variable is defined by either a single component or a complex
function. Please refer to the description of the ComponentGroup for more information.

-- ComponentGroup --

Any value that is pulled directly off the local system is defined by the basic component element. For example,
the name of a user or the value of a registry key. Please refer to the definition of the ObjectComponentType for
more information. A value can also be obtained from another variable. The variable element identifies a
variable id to pull a value(s) from. Please refer to the definition of the VariableComponentType for more
information. Literal values can also be specified.

== ObjectComponentType ==

The ObjectComponentType complex type defines a specific value on the local system to obtain. The required
obj_id provides a reference to an existing OVAL Object declaration. This object defines the object to examine
and eventually pull the value from. The required item_field defines which piece of data to retrieve from the
object referenced by the obj_id. For example, if the obj_id references a file, the item_field may define the
version as the piece of information to use as the value of the variable. The data to retrieve can be found in the
OVAL System Characteristics file under the items associated with the object referenced by obj_id.

Attributes:

Simple Content xsd:anySimpleType

Child Elements Type MinOccurs MaxOccurs

oval-def:ComponentGroup n/a 1 1

Child Elements Type MinOccurs MaxOccurs

object_component oval-def:ObjectComponentType

variable_component oval-def:VariableComponentType

literal_component xsd:anySimpleType

oval-def:FunctionGroup n/a

Attributes:

== VariableComponentType ==

The VariableComponentType complex type defines a specific value obtained by looking at the value of another
OVAL Variable. The required var_ref attribute provides a reference to the variable. One must make sure that
the variable reference does not point to the parent variable that uses this component to avoid a race condition.

-- FunctionGroup --

Complex functions have been defined that help determine how to manipulated specific values. These functions
can be nested together to form complex statements. Each function is designed to work on a specific type of data.
If the data being worked on is not of the correct type, a cast should be attempted before throwing an error. For
example, if a concat function includes a registry component that returns an integer, then the integer should be
cast as a string in order to work with the concat function. Note that if the operation being applied to the variable
by the calling entity is "pattern match", then all the functions are performed before the regular expression is
evaluated. In short, the variable would produce a value as normal and then any pattern match operation would
be performed. Please refer to the description of a specific function for more details about it.

== BeginFunctionType ==

The begin function takes a single string component and defines a character (or string) that the component string
should start with. The character attribute defines the specific character (or string). The character (or string) is
only added to the component string if the component string doesn't already start with the specified character (or
string).

- object_ref oval:ObjectIDPattern (required)

- item_field xsd:string (required)

Attributes:

- var_ref oval:VariableIDPattern (required)

Child Elements Type MinOccurs MaxOccurs

begin oval-def:BeginFunctionType

concat oval-def:ConcatFunctionType

end oval-def:EndFunctionType

escape_regex oval-def:EscapeRegexFunctionType

split oval-def:SplitFunctionType

substring oval-def:SubstringFunctionType

Attributes:

- character xsd:string (required)

Child Elements Type MinOccurs MaxOccurs

oval-def:ComponentGroup n/a

== ConcatFunctionType ==

The concat function takes two or more components and concatenates them together to form a single string. The
first component makes up the begining of the resulting string and any following components are added to the
end it. If one of the components returns multiple values then the concat function would be performed multiple
times and the end result would be an array of values for the local variable. For example assume a local variable
has two sub-components: a basic component element returns the values "abc" and "def", and a literal component
element that has a value of "xyz". The local_variable element would be evaluated to have two values, "abcxyz"
and "defxyz". If one of the components does not exist, then the result of the concat operation should be does not
exist.

== EndFunctionType ==

The end function takes a single string component and defines a character (or string) that the component string
should end with. The character attribute defines the specific character (or string). The character (or string) is
only added to the component string if the component string doesn't already end with the specified character (or
string).

== EscapeRegexFunctionType ==

The escape regex function takes a single string component and escapes all the regular expression characters.
The purpose for this is that many times, a component used in pattern match needs to be treated a literal string
and not regular expression. For example assume a basic component element that pulls a file path out of the
Windows registry. This path is a string that might contain regular expression characters but these characters are
not intended to be such, so they need to be escaped. This function allows a definition writer to mark which
components are in regular expression format and which aren't.

== SplitFunctionType ==

The split function takes a single string component and turns it into multiple values based on a delimiter string.
For example assume a basic component element that returns the value "a-b-c-d" with the delimiter set to "-".

Child Elements Type MinOccurs MaxOccurs

oval-def:ComponentGroup n/a

Attributes:

- character xsd:string (required)

Child Elements Type MinOccurs MaxOccurs

oval-def:ComponentGroup n/a

Child Elements Type MinOccurs MaxOccurs

oval-def:ComponentGroup n/a

The local_variable element would be evaluated to have four values "a", "b", "c", and "d". If the string
component used by the split function returns multiple values, then the split is performed multiple times.

== SubstringFunctionType ==

The substring function takes a single string component and produces a single value that contains a portion of the
original string. The substring_start attribute defines the starting position in the original string. Note, to include
the first character of the string, the start position would be 1. Also note that a value less than one also means
starting at the first character of the string. The substring_length attribute defines how many character after and
including the starting character to include. Note that a substring_length value greater than the actual length of
the string or a negative value means to include all the characters after the starting character. For example
assume a basic component element that returns the value "abcdefg" with a substring_start value of 3 and a
substring_length value of 2. The local_variable element would be evaluate to have a single value of "cd". If the
string component used by the substring function returns multiple values, then the substring operation is
performed multiple times and results in multiple values for the component.

-- ClassEnumeration --

The ClassEnumeration simple type defines the different classes of definitions. These classes are used to group
definitions by the type of system state they are describing. For example, this allows users to find all the
vulnerability definitions.

Attributes:

- delimiter xsd:string (required)

Child Elements Type MinOccurs MaxOccurs

oval-def:ComponentGroup n/a

Attributes:

- substring_start xsd:int (required)

- substring_length xsd:int (required)

Child Elements Type MinOccurs MaxOccurs

oval-def:ComponentGroup n/a

Value Description

compliance A compliance definition describes the state of a machine
as it complies with a specific policy.

inventory An inventory definition describes whether a specific
piece of software is installed on the system.

miscellaneous The 'miscellaneous' class is used to identify definitions
that do not fall into any of the other defined classes.

patch A patch definition details the machine state of whether a

-- SetOperatorEnumeration --

The SetOperatorEnumeration simple type defines acceptable set operations. Set operations are used to take
multiple different sets of objects within OVAL and merge them into a single set. The different operators that
guide this merge are defined below. For each operator, if only a single object has been supplied, then the
resulting set is simply that complete object.

== EntityBaseType ==

The EntityBaseType complex type is an abstract type that defines the default attributes associated with every
entity. Entities can be found in both OVAL Objects and OVAL States and represent the individual properties
associated with items found on a system. An example of a single entity would be the path of a file. Another
example would be the version of the file.

The optional datatype attribute specifies how the given operation should be applied to the data. (the default
datatype is 'string') An example is with the statement 'is 123 less than 98'. If the data is treated as integers the
answer is no, but if the data is treated as strings, then the answer is yes. Specifying a datatype details how the
less than operation should be performed. Another way of thinking of things is that the datatype attribute
specifies how the data should be cast before performing the operation. In the previous example, if the datatype
is set to int, then '123' and '98' should be cast as integers. If a cast can not be made, (trying to cast 'abc' to an
integer) then an error should be thrown.

patch executable should be installed.

vulnerability A vulnerability definition describes the conditions under
which a machine is vulnerable.

Value Description

COMPLEMENT The complement operator is defined in OVAL as a
relative complement. The resulting set contains
everything that belongs to the first declared set that is not
part of the second declared set. If A and B are sets (with
A being the first declared set), then the relative
complement is the set of elements in A, but not in B.

INTERSECTION The intersection of two sets in OVAL results in a set that
contains everything that belongs both sets in the
collection, but nothing else. If A and B are sets, then the
intersection of A and B contains all the elements of A
that also belong to B, but no other elements.

UNION The union of two sets in OVAL results in a set that
contains everything that belongs to either of the original
sets. If A and B are sets, then the union of A and B
contains all the elements of A and all elements of B, with
the duplicates removed.

The optional operation determines how the individual entities should be evaluated. (the default operator is
'equals') Both of these attributes are optional in order to keep the XML clean and readable. The default values
are used most of the time and putting datatype="string" and operator="equals" for each element would muddy
up the XML.

The optional var_ref attribute refers the value of the entity to a variable element. When supplied, the value(s)
associated with the OVAL Variable should be used as the value(s) of the entity. If there is an error computing
the value of the variable, then that error should be passed up to the entity referencing it. If the variable being
referenced does not have a value (for example, if the variable pertains to the size of a file, but the file does not
exist) then one of two results are possible. If the entity is part of an object declaration, then the object is
considered to not exist. If the entity is part of a state declaration, then the state comparison should result in an
error.

== EntityObjectBaseType ==

The EntityObjectBaseType complex type is an abstract type that extends the EntityBaseType and is used by the
entities within an OVAL Objects.

If the entity uses a var_ref and the associated variable defines more than one value, the optional var_check
attribute defines how the data collection should proceed. For example, if an object entity 'filename' with an
operation of 'does not equal' references a variable that returns five different values, and the var_check attribute
has a value of 'all', then an actual file on the system matches only if the actual filename does not equal any of
the variable values. If a variable does not return any value, then an error should be thrown during OVAL
analysis.

== EntityObjectAnyType ==

The EntityObjectAnyType type is extended by the entities of an individual OVAL Object. This type provides
uniformity to each object entity by including the attributes found in the EntityObjectBaseType. This specific
type describes any simple data.

Attributes:

- datatype oval:DatatypeEnumeration (optional -- default='string')

- operation oval:OperationEnumeration (optional -- default='equals')

- var_ref oval:VariableIDPattern (optional)

Simple Content xsd:anySimpleType

Attributes:

- var_check oval:CheckEnumeration (optional -- default='all')

Simple Content oval-def:EntityBaseType

Attributes:

== EntityObjectBinaryType ==

The EntityBinaryType type is extended by the entities of an individual OVAL Object. This type provides
uniformity to each object entity by including the attributes found in the EntityObjectBaseType. This specific
type describes simple binary data. The empty string is also allowed when using a variable reference with an
element.

== EntityObjectBoolType ==

The EntityBoolType type is extended by the entities of an individual OVAL Object. This type provides
uniformity to each object entity by including the attributes found in the EntityObjectBaseType. This specific
type describes simple boolean data. The empty string is also allowed when using a variable reference with an
element.

== EntityObjectFloatType ==

The EntityObjectFloatType type is extended by the entities of an individual OVAL Object. This type provides
uniformity to each object entity by including the attributes found in the EntityObjectBaseType. This specific
type describes simple float data. The empty string is also allowed when using a variable reference with an
element.

== EntityObjectIntType ==

The EntityIntType type is extended by the entities of an individual OVAL Object. This type provides
uniformity to each object entity by including the attributes found in the EntityObjectBaseType. This specific
type describes simple integer data. The empty string is also allowed when using a variable reference with an
element.

== EntityObjectStringType ==

The EntityStringType type is extended by the entities of an individual OVAL Object. This type provides
uniformity to each object entity by including the attributes found in the EntityObjectBaseType. This specific
type describes simple string data.

== EntityStateBaseType ==

The EntityStateBaseType complex type is an abstract type that extends the EntityBaseType and is used by the
entities withing an OVAL State.

The optional entity_check attribute specifies how to handle entities with multiple instances in the system
characteristics file. For example, if an OVAL Object has multiple values associated with it and the OVAL State
defines the value entity as 'less than 3', the entity_check attribute determines if all values must be less than 3, or
at least one value must be less than 3, etc.

Simple Content oval-def:EntityObjectBaseType

If the state entity uses a var_ref and the associated variable defines more than one value, the optional var_check
attribute defines how the evaluation should proceed. For example, if an entity 'size' with an operation of 'less
than' references a variable that returns five different integers, and the var_check attribute has a value of 'all',
then the 'size' entity returns true only if the actual size is less than each of the five integers defined by the
variable. If a variable does not return any value, then an error should be thrown during OVAL analysis.

== EntityStateAnyType ==

The EntityStateAnyType type is extended by the entities of an individual OVAL State. This type provides
uniformity to each state entity by including the attributes found in the EntityStateBaseType. This specific type
describes any simple data.

== EntityStateBinaryType ==

The EntityStateBinaryType type is extended by the entities of an individual OVAL State. This type provides
uniformity to each state entity by including the attributes found in the EntityStateBaseType. This specific type
describes simple binary data. The empty string is also allowed when using a variable reference with an element.

== EntityStateBoolType ==

The EntityStateBoolType type is extended by the entities of an individual OVAL State. This type provides
uniformity to each state entity by including the attributes found in the EntityStateBaseType. This specific type
describes simple boolean data. The empty string is also allowed when using a variable reference with an
element.

== EntityStateFloatType ==

The EntityStateFloatType type is extended by the entities of an individual OVAL State. This type provides
uniformity to each state entity by including the attributes found in the EntityStateBaseType. This specific type
describes simple float data. The empty string is also allowed when using a variable reference with an element.

== EntityStateIntType ==

Attributes:

- entity_check oval:CheckEnumeration (optional -- default='all')

- var_check oval:CheckEnumeration (optional -- default='all')

Simple Content oval-def:EntityBaseType

Attributes:

Simple Content oval-def:EntityStateBaseType

The EntityStateIntType type is extended by the entities of an individual OVAL State. This type provides
uniformity to each state entity by including the attributes found in the EntityStateBaseType. This specific type
describes simple integer data. The empty string is also allowed when using a variable reference with an element.

== EntityStateStringType ==

The EntityStateStringType type is extended by the entities of an individual OVAL State. This type provides
uniformity to each state entity by including the attributes found in the EntityStateBaseType. This specific type
describes simple string data.

