
- Open Vulnerability and Assessment Language -
Element Dictionary

� Schema: Red Hat Definition
� Version: 4.2
� Release Date: 2 December 2005

The following is a description of the elements, types, and attributes that compose the Red Hat specific
tests found in Open Vulnerability and Assessment Language (OVAL). Each test is an extension of the
standard test element defined in the Core Definition Schema. Through extension, each test inherits a set of
elements and attributes that are shared amongst all OVAL tests. Each test is described in detail and should
provide the information necessary to understand what each element and attribute represents. This
document is intended for developers and assumes some familiarity with XML. A high level description of
the interaction between the different tests and their relationship to the Core Definition Schema is not
outlined here.

The OVAL Schema is maintained by The Mitre Corporation and developed by the public OVAL
Community. For more information, including how to get involved in the project and how to submit
change requests, please visit the OVAL website at http://oval.mitre.org.

Elements

This section describes all the elements that are found within the schema, starting with the root
element. Note that in the tables outlining possible attributes and child elements, square
brackets [] means that the item is optional. All complex and simple types, along with attribute
groups are described later in this document.

File Test

<file_test>

This test has been deprecated in version 4.1 of the redhat-schema and will be removed completely in
version 5. It is recommended that all future OVAL Content use the file_test found in the unix-schema.

This test's purpose is to check a file's metadata, of the sort returned by either an ls command, stat
command or stat() system call. The object being tested here is specified by an absolute path to a file.
Remember that the default operator is EXISTS, so if no operator attribute is present for the path element
and file specified is not found, then the test should fail.

Extends: standardTestType

object section

<path>

Specifies the absolute path to a file on the machine. This path can be created from multiple components
that are added together. When a pattern match operator is used, the corresponding regular expression is
matched against the set of absolute path strings. These string would not include the '.' and '..' notations.
This means that a '.*' component of a regular expression will not only match all files in the specified
directories, but all subdirectories, their subdirectories, etc.

data section

<type>

This is the file's type: regular file (regular), directory, named pipe (fifo), symbolic link, socket or block
special.

<group_id>

This is the group owner of the file, by group number.

Valid Sections: notes, object, data

Parent Test: File Test

Cardinality: 1

Content: none

Valid Datatypes: component

Valid Operators: equals, not equal, pattern match

Parent Test: File Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

<user_id>

The numeric user id, or uid, is the third column of each user's entry in /etc/passwd. This element
represents the owner of the file.

<a_time>

This is the time of the last access, in seconds since the last epoch.

<c_time>

This is the time of the last change to the file's inode, which stores all.

Parent Test: File Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: File Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: File Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators:
equals, not equal, greater than, less than, greater than or
equal, less than or equal, pattern match

Parent Test: File Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators:
equals, not equal, greater than, less than, greater than or
equal, less than or equal, pattern match

<m_time>

This is the time of the last change to the file's contents.

<md5>

This is the MD5 hash of the file's contents, which serves as a kind of content integrity check.

Inet Listening Servers Test

<inetlisteningservers_test>

This test's purpose is generally used to check if a program is listening on the network, either for a new
connections or as part of an ongoing connection. It is generally speaking the parsed output of running the
command netstat -tuwlnpe with root privilege.

object section

Parent Test: File Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators:
equals, not equal, greater than, less than, greater than or
equal, less than or equal, pattern match

Parent Test: File Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Extends: standardTestType

Valid Sections: notes, object, data

<program_name>

This is the name of the communicating program.

data section

<local_address>

This is the IP address of the network interface on which the program listens.

<local_full_address>

This is the IP address and network port on which the program listens, equivalent to
local_address:local_port.

<local_port>

This is the TCP or UDP port on which the program listens. Note that this is not a list -- if a program
listens on multiple ports, or on a combination of TCP and UDP, each will have its own entry in the table
data stored by this test.

Parent Test: Inet Listening Servers Test

Cardinality: 1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Inet Listening Servers Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Inet Listening Servers Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

<foreign_address>

This is the IP address with which the program is communicating, or with which it will communicate, in
the case of a listening server.

<foreign_full_address>

This is the IP address and network port to which the program is communicating or will accept
communications from, equivalent to foreign_address:foreign_port.

<foreign_port>

This is the TCP or UDP port to which the program communicates. In the case of a listening program
accepting new connections, this is usually a *.

Parent Test: Inet Listening Servers Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Inet Listening Servers Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Inet Listening Servers Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Inet Listening Servers Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

<pid>

This is the process ID of the process. The process in question is that of the program communicating on the
network.

<protocol>

This is the transport-layer protocol, in lowercase: tcp or udp.

<user_id>

The numeric user id, or uid, is the third column of each user's entry in /etc/passwd. It represents the
owner, and thus privilege level, of the specified program.

Interface Test

<interface_test>

Parent Test: Inet Listening Servers Test

Cardinality: 0-1

Content: integer

Valid Datatypes: integer

Valid Operators:
equals, not equal, greater than, less than, greater than or
equal, less than or equal

Parent Test: Inet Listening Servers Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Inet Listening Servers Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

This test has been deprecated in version 4.1 of the redhat-schema and will be removed completely in
version 5. It is recommended that all future OVAL Content use the interface_test found in the unix-
schema.

This test presents information one would expect to acquire by running ifconfig to display information
about a particular network interface.

object section

<name>

This is the interface (eth0, eth1, etc.) name to check.

data section

<hardware_addr>

This is the hardware or MAC address of the physical network card.

<inet_addr>

Extends: standardTestType

Valid Sections: notes, object, data

Parent Test: Interface Test

Cardinality: 1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Interface Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

This is the IP address of the interface.

<broadcast_addr>

This is the broadcast IP address for this interface's network, like 192.168.255.255.

<netmask>

This is the bitmask used to calculate the inteface's IP network. The network number is calculated by
bitwise-ANDing this with the IP address. The host number on that network is calculated by bitwise-
XORing this with the IP address.

<flag>

This is the interface flag line, which generally contains flags like "UP" to denote an active interface,
"PROMISC" to note that the interface is listening for Ethernet frames not specifically addressed to it, and
others.

Parent Test: Interface Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Interface Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Interface Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Interface Test

Cardinality: 0-n

Content: string

Permission Test

<permission_test>

This test has been deprecated in version 4.1 of the redhat-schema and will be removed completely in
version 5. It is recommended that all future OVAL Content use the permission_test found in the unix-
schema.

This test checks the permission bits on a file, returning 1 or 0 based on the content of the named
permission bit. The permission bits of a file are part of the octal "mode" of the file, a number that can be
gathered via the stat command, stat() system call, or ls command. Each octal digit of the mode is a 3-bit
number (0-7). In the first digit's bits are the Set-UID, Set-GID and Sticky bits. The remaining three digits
are the user, group and other digits, corresponding to the user owner of the file, the group owner of the
file, and then every other user on the system. Within these digits, the first bit is the read bit, the second bit
is the write bit, and the third bit is the execute bit.

object section

<path>

Specifies the absolute path to a file on the machine. This path can be created from multiple components
that are added together. When a pattern match operator is used, the corresponding regular expression is
matched against the set of absolute path strings. These string would not include the '.' and '..' notations.
This means that a '.*' component of a regular expression will not only match all files in the specified
directories, but all subdirectories, their subdirectories, etc.

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Extends: standardTestType

Valid Sections: notes, object, data

Parent Test: Permission Test

Cardinality: 1

Content: none

data section

<gexec>

Can the group owner of the file execute it or, if a directory, change into the directory?

<gread>

Can the group owner of the file read this file or, if a directory, read the directory contents?

<gwrite>

Can the group owner of the file write to this file or directory?

<oexec>

Valid Datatypes: component

Valid Operators: equals, not equal, pattern match

Parent Test: Permission Test

Cardinality: 0-1

Content: boolean

Valid Datatypes: boolean

Valid Operators: equals, not equal

Parent Test: Permission Test

Cardinality: 0-1

Content: boolean

Valid Datatypes: boolean

Valid Operators: equals, not equal

Parent Test: Permission Test

Cardinality: 0-1

Content: boolean

Valid Datatypes: boolean

Valid Operators: equals, not equal

Can the other users execute this file or, if a directory, change into the directory?

<oread>

Can all other users read this file or, if a directory, read the directory contents?

<owrite>

Can the other users write to this file or directory?

<sgid>

Does the program run with the gid (thus privileges) of the file's group owner, rather than the calling user's
group?

Parent Test: Permission Test

Cardinality: 0-1

Content: boolean

Valid Datatypes: boolean

Valid Operators: equals, not equal

Parent Test: Permission Test

Cardinality: 0-1

Content: boolean

Valid Datatypes: boolean

Valid Operators: equals, not equal

Parent Test: Permission Test

Cardinality: 0-1

Content: boolean

Valid Datatypes: boolean

Valid Operators: equals, not equal

Parent Test: Permission Test

Cardinality: 0-1

Content: boolean

Valid Datatypes: boolean

Valid Operators: equals, not equal

<sticky>

Can users delete each other's files in this directory, when said directory is writable by those users?

<suid>

Does the program run with the uid (thus privileges) of the file's owner, rather than the calling user?

<uexec>

Can the owner (user owner) of the file execute it or, if a directory, change into the directory?

<uread>

Can the owner (user owner) of the file read this file or, if a directory, read the directory contents?

Parent Test: Permission Test

Cardinality: 0-1

Content: boolean

Valid Datatypes: boolean

Valid Operators: equals, not equal

Parent Test: Permission Test

Cardinality: 0-1

Content: boolean

Valid Datatypes: boolean

Valid Operators: equals, not equal

Parent Test: Permission Test

Cardinality: 0-1

Content: boolean

Valid Datatypes: boolean

Valid Operators: equals, not equal

Parent Test: Permission Test

Cardinality: 0-1

Content: boolean

Valid Datatypes: boolean

<uwrite>

Can the owner (user owner) of the file read this file or, if a directory, read the directory contents?

Process Test

<process_test>

This test has been deprecated in version 4.1 of the redhat-schema and will be removed completely in
version 5. It is recommended that all future OVAL Content use the process_test found in the unix-schema.

This test checks the process information for a given process. It is equivalent to parsing the output of ps -
ecf.

object section

<command>

This specifies the command/program name to check.

Valid Operators: equals, not equal

Parent Test: Permission Test

Cardinality: 0-1

Content: boolean

Valid Datatypes: boolean

Valid Operators: equals, not equal

Extends: standardTestType

Valid Sections: notes, object, data

Parent Test: Process Test

Cardinality: 1

data section

<exec_time>

This is the amount of CPU time (not clock time) that the process has consumed, formatted in HH:MM:SS
or days.

<pid>

This is the process ID of the process.

<ppid>

This is the process ID of the process's parent process.

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Process Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Process Test

Cardinality: 0-1

Content: integer

Valid Datatypes: integer

Valid Operators:
equals, not equal, greater than, less than, greater than or
equal, less than or equal

Parent Test: Process Test

Cardinality: 0-1

Content: integer

Valid Datatypes: integer

<priority>

This is the scheduling priority with which the process runs. This can be adjusted with the nice command
or nice() system call.

<scheduling_class>

A characteristic maintained by the scheduler: RT (real-time), TS (timeshare), B (batch), BC (batch
critical), WL (weightless) and GN (gang scheduled).

<start_time>

This is the time of day in which the process was started in either HH:MM:SS or days.

<tty>

This is the TTY on which the process was started, if applicable.

Valid Operators:
equals, not equal, greater than, less than, greater than or
equal, less than or equal

Parent Test: Process Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Process Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Process Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Process Test

<user_id>

The numeric user id, or uid, is the third column of each user's entry in /etc/passwd. It represents the
owner, and thus privilege level, of the specified program.

RPM Info Test

<rpminfo_test>

This test checks the RPM header information for a given RPM package and should be fairly similar to
calling rpm -qi package_name. Most applications actually use rpmversioncompare_test, as it is designed
to compare the installed RPM's version information to an up-to-date or vulnearable RPM version.

object section

<name>

This is the package name to check.

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Process Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Extends: standardTestType

Valid Sections: notes, object, data

data section

<arch>

This is the architecture for which the RPM was built, like : i386, ppc, sparc, noarch. In the case of an
apache rpm named httpd-2.0.40-21.11.4.i686.rpm, this value would be i686.

<epoch>

This is the epoch number of the RPM, this is used as a kludge for version-release comparisons where the
vendor has done some kind of re-numbering or version forking. This number is not revealed by a normal
query of the RPM's information -- you must use a formatted rpm query command to gather this data from
the command line, like so. For an already-installed RPM: rpm -q --qf '%{EPOCH}\n' installed_rpm For
an RPM file that has not been installed: rpm -qp --qf '%{EPOCH}\n' rpm_file

<release>

This is the version number of the build, changed by the vendor/builder. In the case of an apache rpm
named httpd-2.0.40-21.11.4.i686.rpm, this value would be 21.11.4.

Parent Test: RPM Info Test

Cardinality: 1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: RPM Info Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: RPM Info Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

<version>

This is the version number of the software built in this RPM. In the case of an apache rpm named httpd-
2.0.40-21.11.4.i686.rpm, this value would be 2.0.40. This is the version number assigned by the apache
code maintainers.

<evr_version>

This represents the epoch, version, and release fields as a single version string. It has the form
"EPOCH:VERSION-RELEASE".

<signature_keyid>

This field is used to see if the RMP has been signed by the expected party.

Parent Test: RPM Info Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: RPM Info Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: RPM Info Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators:
equals, not equal, greater than, less than, greater than or
equal, less than or equal, pattern match

Parent Test: RPM Info Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

RPM Version Compare Test

<rpmversioncompare_test>

This test has been deprecated in version 4.1 of the redhat-schema and will be removed completely in
version 5. It is recommended that all future OVAL Content use the rpminfo_test.

This test checks the installed RPM against a given epoch, version and release number. This is the primary
Red Hat schema item used to check the presence of unpatched software. To test for software before a
given update, you simply plug in the information for the first RPM that doesn't have the given security
flaw.

object section

<name>

This is the package name to check.

<tested_epoch>

This is the epoch number to test against. The epoch is used as a kludge for version-release comparisons
where the vendor has done some kind of re-numbering or version forking. This number is not revealed by
a normal query of the RPM's information -- you must use a formatted rpm query command to gather this
data from the command line, like so. For an already-installed RPM: rpm -q --qf '%{EPOCH}\n'
installed_rpm For an RPM file that has not been installed: rpm -qp --qf '%{EPOCH}\n' rpm_file

Extends: standardTestType

Valid Sections: notes, object, data

Parent Test: RPM Version Compare Test

Cardinality: 1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

<tested_version>

This is the version number of the software that we want to test against. In the case of an apache rpm
named httpd-2.0.40-21.11.4.i686.rpm, this value would be 2.0.40. This is the version number assigned by
the apache code maintainers.

<tested_release>

This is the version number of the build, changed by the vendor/builder. In the case of an apache rpm
named httpd-2.0.40-21.11.4.i686.rpm, this value would be 21.11.4.

data section

<installed_version>

This is the result of the comparison: earlier, equal, later or not installed.

Parent Test: RPM Version Compare Test

Cardinality: 1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: RPM Version Compare Test

Cardinality: 1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: RPM Version Compare Test

Cardinality: 1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: RPM Version Compare Test

Cardinality: 0-1

Shadow Test

<shadow_test>

This test allows you to check information from the /etc/shadow file for a specific user. This file contains a
user's password, but also their password aging and lockout information. Background: Unix systems are
generally configured to only allow a given password to last for a fixed period of time. When this time, the
chg_req parameter, is near running out, the system begins warning the user at each login. How soon
before the expiration the user receives these warnings is specified in exp_warn. The only hiccup in this
design is that a user may not login in time to ever receive a warning before account expiration. The
exp_inact parameter gives the sysadmin flexibility so that a user who reaches the end of their expiration
time gains exp_inact more days to login and change their password manually.

object section

<username>

This is the name of the user being checked.

data section

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Extends: standardTestType

Valid Sections: notes, object, data

Parent Test: Shadow Test

Cardinality: 1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

<password>

This is the encrypted version of the user's password.

<chg_lst>

This is the date of the last password change in days since 1/1/1970.

<chg_allow>

This specifies how often in days a user may change their password. It can also be thought of as the
minimum age of a password.

<chg_req>

This describes how long a user can keep a password before the system forces her to change it.

Parent Test: Shadow Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Shadow Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Shadow Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Shadow Test

Cardinality: 0-1

<exp_warn>

This describes how long before password expiration the system begins warning the user. The system will
warn the user at each login.

<exp_inact>

This describes how many days of account inactivity the system will wait after a password expires before
locking the account? This window, usually only set to a few days, gives users who are logging in very
seldomly a bit of extra time to receive the password expiration warning and change their password.

<exp_date>

This speicifies when will the account's password expire, in days since 1/1/1970.

<flag>

This is a reserved field that the shadow file may use in the future.

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Shadow Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Shadow Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Shadow Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Text File Content Test

<textfilecontent_test>

This test has been deprecated in version 4.1 of the redhat-schema and will be removed completely in
version 5. It is recommended that all future OVAL Content use the textfilecontent_test found in the
independent-schema.

This test allows you to check a file's content, basically by serving as a flexible, regular-expression enabled
'grep'. grep checks for the existence of a line matching a given pattern in a file.

object section

<path>

Specifies the absolute path to a file on the machine. This path can be created from multiple components
that are added together. When a pattern match operator is used, the corresponding regular expression is
matched against the set of absolute path strings. These string would not include the '.' and '..' notations.
This means that a '.*' component of a regular expression will not only match all files in the specified
directories, but all subdirectories, their subdirectories, etc.

Parent Test: Shadow Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Extends: standardTestType

Valid Sections: notes, object, data

Parent Test: Text File Content Test

Cardinality: 1

Content: none

Valid Datatypes: component

<line>

The line element represents a line in the file and is represented using a regular expression.

data section

<subexpression>

Each subexpression in the regular expression of the line element is then tested against the value specified
in the subexpression element.

Uname Test

<uname_test>

This test has been deprecated in version 4.1 of the redhat-schema and will be removed completely in
version 5. It is recommended that all future OVAL Content use the uname_test found in the unix-schema.

This test reveals information about the hardware the machine is running on. This information is the parsed
equivalent of uname -a. For example: "Linux quark 2.6.5-7.108-default #1 Wed Aug 25 13:34:40 UTC
2004 i686 i686 i386 GNU/Linux"

Valid Operators: equals, not equal, pattern match

Parent Test: Text File Content Test

Cardinality: 1

Content: string

Valid Datatypes: string

Valid Operators: pattern match

Parent Test: Text File Content Test

Cardinality: 0-n

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

data section

<machine_class>

This is the machine hardware name, 5th field from uname -a.

<node_name>

This is the host name, the 2nd field from uname -a.

<os_name>

This is the operating system name, the 1st field from uname -a.

<os_release>

Extends: standardTestType

Valid Sections: notes, data

Parent Test: Uname Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Uname Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Uname Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

This is the build version, 4th field from uname -a. For example, from a running Linux system: "#1 Wed
Aug 25 13:34:40 UTC 2004"

<os_version>

This is the operating system version, the 3rd field from uname -a.

<processor_type>

This is the processor type, 6th field from uname -a.

XML File Content Test

<xmlfilecontent_test>

This test has been deprecated in version 4.1 of the redhat-schema and will be removed completely in
version 5. It is recommended that all future OVAL Content use the xmlfilecontent_test found in the
independent-schema.

Parent Test: Uname Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Uname Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Uname Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

This test allows you to check an element in an XML file.

object section

<path>

Specifies the absolute path to a file on the machine. This path can be created from multiple components
that are added together. When a pattern match operator is used, the corresponding regular expression is
matched against the set of absolute path strings. These string would not include the '.' and '..' notations.
This means that a '.*' component of a regular expression will not only match all files in the specified
directories, but all subdirectories, their subdirectories, etc.

<xpath>

Specifies an Xpath expression describing the nodes to look at.

data section

<value_of>

Extends: standardTestType

Valid Sections: notes, object, data

Parent Test: XML File Content Test

Cardinality: 1

Content: none

Valid Datatypes: component

Valid Operators: equals, not equal, pattern match

Parent Test: XML File Content Test

Cardinality: 1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

The value element checks the value of the nodes found. How this is used is entirely controlled by operator
attributes.

<platform>

The valid platforms for the RedHat Linux family.

 -- Red Hat Linux 9
 -- Red Hat Enterprise Linux 3
 -- Red Hat Enterprise Linux 4
 -- Red Hat Fedora Core 1
 -- Red Hat Fedora Core 2
 -- Red Hat Fedora Core 3
 -- Red Hat Fedora Core 4
 -- Red Hat Fedora Core 5

Complex Types

This section describes any global complex types defined in the schema. These types can be
instantiated by elements in this schema as well as elements in other schemas. Note that in the
tables outlining possible attributes and child elements, square brackets [] means that the item
is optional.

-- componentType --

The componentType allows a value to be obtained by combining pieces from different sources. Each
string defined by the different component elements is concatenated together to form the final string used.
Each child component element has an attribute called type. The value of this attribute determines where to
get the string used to build the file path. A type of literal means to use the value of the child component
element as is, and to just concatenated it to the other strings. If a pattern match operator has been specified
with a componentType, then the final string should be thought of as the pattern to test. As of Version 4 of
the OVAL schema, pattern match can not be specified for the idividual components.

Parent Test: XML File Content Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Extends: oval:subtestBaseType

Attributes: (includes oval:subtestAttributes)

Content: none

Child Elements: component

