
- Open Vulnerability and Assessment Language -
Element Dictionary

� Schema: UNIX Definition
� Version: 4.2
� Release Date: 2 December 2005

The following is a description of the elements, types, and attributes that compose generic UNIX tests
found in Open Vulnerability and Assessment Language (OVAL). Each test is an extension of the standard
test element defined in the Core Definition Schema. Through extension, each test inherits a set of
elements and attributes that are shared amongst all OVAL tests. Each test is described in detail and should
provide the information necessary to understand what each element and attribute represents. This
document is intended for developers and assumes some familiarity with XML. A high level description of
the interaction between the different tests and their relationship to the Core Definition Schema is not
outlined here.

The OVAL Schema is maintained by The Mitre Corporation and developed by the public OVAL
Community. For more information, including how to get involved in the project and how to submit
change requests, please visit the OVAL website at http://oval.mitre.org.

Elements

This section describes all the elements that are found within the schema, starting with the root
element. Note that in the tables outlining possible attributes and child elements, square
brackets [] means that the item is optional. All complex and simple types, along with attribute
groups are described later in this document.

File Test

<file_test>

This test's purpose is to check a file's metadata, of the sort returned by either an ls command, stat
command or stat() system call. The object being tested here is specified by an absolute path to a file.
Remember that the default operator is EXISTS, so if no operator attribute is present for the path element
and file specified is not found, then the test should fail.

Extends: standardTestType

Valid Sections: notes, object, data

object section

<path>

Specifies the absolute path to a file on the machine. This path can be created from multiple components
that are added together. When a pattern match operator is used, the corresponding regular expression is
matched against the set of absolute path strings. These string would not include the '.' and '..' notations.
This means that a '.*' component of a regular expression will not only match all files in the specified
directories, but all subdirectories, their subdirectories, etc.

data section

<type>

This is the file's type: regular file (regular), directory, named pipe (fifo), symbolic link, socket or block
special.

<user>

This is the owner of the file.

Parent Test: File Test

Cardinality: 1

Content: none

Valid Datatypes: component

Valid Operators: equals, not equal, pattern match

Parent Test: File Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: File Test

Cardinality: 0-1

<group>

This is the group of the file.

<group_id>

This is the group owner of the file, by group number.

<user_id>

The numeric user id, or uid, is the third column of each user's entry in /etc/passwd. This element
represents the owner of the file.

<a_time>

This is the time of the last access, in seconds since the last epoch.

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: File Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: File Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: File Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

<c_time>

This is the time of the last change to the file's inode, which stores all.

<m_time>

This is the time of the last change to the file's contents.

<md5>

This is the MD5 hash of the file's contents, which serves as a kind of content integrity check.

Parent Test: File Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators:
equals, not equal, greater than, less than, greater than or
equal, less than or equal, pattern match

Parent Test: File Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators:
equals, not equal, greater than, less than, greater than or
equal, less than or equal, pattern match

Parent Test: File Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators:
equals, not equal, greater than, less than, greater than or
equal, less than or equal, pattern match

Parent Test: File Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

<size>

This is the size of the file in bytes.

Interface Test

<interface_test>

This test presents information one would expect to acquire by running ifconfig to display information
about a particular network interface.

object section

<name>

This is the interface (eth0, eth1, fw0, etc.) name to check.

Parent Test: File Test

Cardinality: 0-1

Content: integer

Valid Datatypes: integer

Valid Operators:
equals, not equal, greater than, less than, greater than or
equal, less than or equal

Extends: standardTestType

Valid Sections: notes, object, data

Parent Test: Interface Test

Cardinality: 1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

data section

<hardware_addr>

This is the hardware or MAC address of the physical network card.

<inet_addr>

This is the IP address of the interface.

<broadcast_addr>

This is the broadcast IP address for this interface's network, like 192.168.255.255.

<netmask>

This is the bitmask used to calculate the inteface's IP network. The network number is calculated by
bitwise-ANDing this with the IP address. The host number on that network is calculated by bitwise-
XORing this with the IP address.

Parent Test: Interface Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Interface Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Interface Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

<flag>

This is the interface flag line, which generally contains flags like "UP" to denote an active interface,
"PROMISC" to note that the interface is listening for Ethernet frames not specifically addressed to it, and
others.

Permission Test

<permission_test>

This test checks the permission bits on a file, returning 1 or 0 based on the content of the named
permission bit. The permission bits of a file are part of the octal "mode" of the file, a number that can be
gathered via the stat command, stat() system call, or ls command. Each octal digit of the mode is a 3-bit
number (0-7). In the first digit's bits are the Set-UID, Set-GID and Sticky bits. The remaining three digits
are the user, group and other digits, corresponding to the user owner of the file, the group owner of the
file, and then every other user on the system. Within these digits, the first bit is the read bit, the second bit
is the write bit, and the third bit is the execute bit.

object section

Parent Test: Interface Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Interface Test

Cardinality: 0-n

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Extends: standardTestType

Valid Sections: notes, object, data

<path>

Specifies the absolute path to a file on the machine. This path can be created from multiple components
that are added together. When a pattern match operator is used, the corresponding regular expression is
matched against the set of absolute path strings. These string would not include the '.' and '..' notations.
This means that a '.*' component of a regular expression will not only match all files in the specified
directories, but all subdirectories, their subdirectories, etc.

data section

<gexec>

Can the group owner of the file execute it or, if a directory, change into the directory?

<gread>

Can the group owner of the file read this file or, if a directory, read the directory contents?

Parent Test: Permission Test

Cardinality: 1

Content: none

Valid Datatypes: component

Valid Operators: equals, not equal, pattern match

Parent Test: Permission Test

Cardinality: 0-1

Content: boolean

Valid Datatypes: boolean

Valid Operators: equals, not equal

Parent Test: Permission Test

Cardinality: 0-1

Content: boolean

Valid Datatypes: boolean

Valid Operators: equals, not equal

<gwrite>

Can the group owner of the file write to this file or directory?

<oexec>

Can the other users execute this file or, if a directory, change into the directory?

<oread>

Can all other users read this file or, if a directory, read the directory contents?

<owrite>

Can the other users write to this file or directory?

Parent Test: Permission Test

Cardinality: 0-1

Content: boolean

Valid Datatypes: boolean

Valid Operators: equals, not equal

Parent Test: Permission Test

Cardinality: 0-1

Content: boolean

Valid Datatypes: boolean

Valid Operators: equals, not equal

Parent Test: Permission Test

Cardinality: 0-1

Content: boolean

Valid Datatypes: boolean

Valid Operators: equals, not equal

Parent Test: Permission Test

Cardinality: 0-1

Content: boolean

Valid Datatypes: boolean

<sgid>

Does the program run with the gid (thus privileges) of the file's group owner, rather than the calling user's
group?

<sticky>

Can users delete each other's files in this directory, when said directory is writable by those users?

<suid>

Does the program run with the uid (thus privileges) of the file's owner, rather than the calling user?

<uexec>

Can the owner (user owner) of the file execute it or, if a directory, change into the directory?

Valid Operators: equals, not equal

Parent Test: Permission Test

Cardinality: 0-1

Content: boolean

Valid Datatypes: boolean

Valid Operators: equals, not equal

Parent Test: Permission Test

Cardinality: 0-1

Content: boolean

Valid Datatypes: boolean

Valid Operators: equals, not equal

Parent Test: Permission Test

Cardinality: 0-1

Content: boolean

Valid Datatypes: boolean

Valid Operators: equals, not equal

Parent Test: Permission Test

Cardinality: 0-1

<uread>

Can the owner (user owner) of the file read this file or, if a directory, read the directory contents?

<uwrite>

Can the owner (user owner) of the file read this file or, if a directory, read the directory contents?

Process Test

<process_test>

This test checks the process information for a given process. It is equivalent to parsing the output of the ps
command.

Content: boolean

Valid Datatypes: boolean

Valid Operators: equals, not equal

Parent Test: Permission Test

Cardinality: 0-1

Content: boolean

Valid Datatypes: boolean

Valid Operators: equals, not equal

Parent Test: Permission Test

Cardinality: 0-1

Content: boolean

Valid Datatypes: boolean

Valid Operators: equals, not equal

Extends: standardTestType

Valid Sections: notes, object, data

object section

<command>

This specifies the command/program name to check.

data section

<exec_time>

This is the amount of CPU time (not clock time) that the process has consumed, formatted in HH:MM:SS
or days.

<pid>

This is the process ID of the process.

Parent Test: Process Test

Cardinality: 1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Process Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Process Test

Cardinality: 0-1

Content: integer

Valid Datatypes: integer

equals, not equal, greater than, less than, greater than or

<ppid>

This is the process ID of the process's parent process.

<priority>

This is the scheduling priority with which the process runs. This can be adjusted with the nice command
or nice() system call.

<scheduling_class>

A characteristic maintained by the scheduler: RT (real-time), TS (timeshare), B (batch), BC (batch
critical), WL (weightless) and GN (gang scheduled).

<start_time>

This is the time of day in which the process was started in either HH:MM:SS or days.

Valid Operators: equal, less than or equal

Parent Test: Process Test

Cardinality: 0-1

Content: integer

Valid Datatypes: integer

Valid Operators:
equals, not equal, greater than, less than, greater than or
equal, less than or equal

Parent Test: Process Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Process Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Process Test

<tty>

This is the TTY on which the process was started, if applicable.

<user_id>

The numeric user id, or uid, is the third column of each user's entry in /etc/passwd. It represents the
owner, and thus privilege level, of the specified program.

Uname Test

<uname_test>

This test reveals information about the hardware the machine is running on. This information is the parsed
equivalent of uname -a. For example: "Linux quark 2.6.5-7.108-default #1 Wed Aug 25 13:34:40 UTC
2004 i686 i686 i386 GNU/Linux" or "Darwin TestHost 7.7.0 Darwin Kernel Version 7.7.0: Sun Nov 7
16:06:51 PST 2004; root:xnu/xnu-517.9.5.obj~1/RELEASE_PPC Power Macintosh powerpc"

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Process Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Process Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Extends: standardTestType

data section

<machine_class>

This is the machine hardware name, 5th field from uname -a.

<node_name>

This is the host name, the 2nd field from uname -a.

<os_name>

This is the operating system name, the 1st field from uname -a.

<os_release>

Valid Sections: notes, data

Parent Test: Uname Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Uname Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Uname Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

This is the build version, 4th field from uname -a. For example, from a running Linux system: "#1 Wed
Aug 25 13:34:40 UTC 2004"

<os_version>

This is the operating system version, the 3rd field from uname -a.

<processor_type>

This is the processor type, 6th field from uname -a.

Complex Types

This section describes any global complex types defined in the schema. These types can be
instantiated by elements in this schema as well as elements in other schemas. Note that in the
tables outlining possible attributes and child elements, square brackets [] means that the item
is optional.

Parent Test: Uname Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Uname Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

Parent Test: Uname Test

Cardinality: 0-1

Content: string

Valid Datatypes: string

Valid Operators: equals, not equal, pattern match

-- componentType --

The componentType allows a value to be obtained by combining pieces from different sources. Each
string defined by the different component elements is concatenated together to form the final string used.
Each child component element has an attribute called type. The value of this attribute determines where to
get the string used to build the file path. A type of literal means to use the value of the child component
element as is, and to just concatenated it to the other strings. If a pattern match operator has been specified
with a componentType, then the final string should be thought of as the pattern to test. As of Version 4 of
the OVAL schema, pattern match can not be specified for the idividual components.

Extends: oval:subtestBaseType

Attributes: (includes oval:subtestAttributes)

Content: none

Child Elements: component

