
SCAP & PowerShell
Kelly Hengesteg, Jeffrey Snover, Michael Tan

Microsoft Corporation

June, 2011

Topics

• Problems and Business Needs

• PowerShell Overview

• Proposed Design

•Q/A

Problems and Business Needs

• Some new Microsoft security baselines are using
PowerShell Cmdlets as the only method for security
configuration automation (e.g. Exchange, SQL and
soon to be Windows 8)

•Microsoft Common Engineering Criteria requires
the use of PowerShell Cmdlets for all administrative
tasks, including configuration management

• Today SCAP does not support scripting or more
specifically PowerShell

• As interactive and composable as BASH/KSH

• As programmatic as Perl/Python/Ruby

• As production oriented as AS400 CL/VMS DCL

• Allows access to data stores as easy to access as filesystem

Windows PowerShell
New command-line shell and scripting language

Usage in Microsoft

• Common Engineering Criteria

–Deliver a complete set of task-oriented cmdlets
which cover: Configuration (read/write),
Operational verification tests, Lifecycle, Security,
Diagnostics, and Data Management.

• Broad, enthusiastic product adoption

–Customer feedback and move to services

• Strong momentum and investment stream

http://sharepoint/sites/WindowsManageability/Technologies/PowerShell/default.aspx

Components

• Host
– A program which uses the Automation Engine to deliver a UX (e.g.

PowerShell.exe, SCVMM, Exchange Admin GUI, wsmprovhost)

• Automation Engine
– Programmable interface to execute cmdlets and/or scripts in local or

remote runspaces, via strings or datastructures

• Cmdlets
– High-level, task-oriented, abstractions with standardized naming and

semantics implemented via .NET classes, PowerShell scripts, …

• Scripts
– Strings/files using PowerShell language syntax

• Runspace
– Space to run Cmdlets or scripts.

6/14/2011

PowerShell Core

Engine

Script & Parser Engine

Admin GUI Tools PowerShell.Exe

MetaData
Processor

PipeLine
Processor

CmdLet Setup

 Config/
Registration

Logging/
Auditing

Intellisence/
Metadata

Access

Loader

Help Cmdlet

To System Auditing/
Crimson

WebServices
OR

Any Agent

Error & Event
Handler

Session State
& Jobs

Type

Coercion &

Extended

Reflection

Internet/Intranet

PowerShell*.DLL

Data Store

StdIn and
StdOut

Out of Proc
To system services/

applications

Management

CmdLet

IIS or AD or

Exch or SQL

Web

Service

Legacy

Utilities

PowerShell

Remoting
WSMAN

MshPlatform.dll

PowerShell Engine

Exchange cmdlets

Managed Element Access

AD
Registry Meta

base

MAPI
Store

Process
boundary

Exchange Management Architecture

Early-bound objs

WinForms

ADO.Net

WinForms

CLI

GUI

Setup

Get-Process | Where { $_.handles –gt 500 } | Sort handlecount | Format-Table

G
e
t-P

ro
c
e
s
s

C
la

s
s

Common PowerShell Parser

PowerShell Pipeline Processor

W
h

e
re

 C
la

s
s

S
o

rt

C
la

s
s

F
o

rm
a
t

C
la

s
s

RunSpace

UI Host

How it works

Production-Oriented

• “Think, Type, Get” requires consistent syntax and naming
– Cmdlet => MetaData => (modification) => Parser
– Uniform syntax
– Validation Attributes => uniform error messages
– Programmability (Help, Auto-generated GUIs, etc)
– Proxies

– Strong naming guidelines
– Limited set of Verbs
– Strong convention for Nouns and Parameters

• Consistent semantics
– -Whatif, -Confirm, -Verbose
– -ErrorAction, -OutputVariable…

• SAFE
– Execution Policy (Restricted, AllSigned, Remotesigned, unrestricted)
– Constrained Runspaces

PS> get-command Get-Process |Get-Member -MemberType Property

 TypeName: System.Management.Automation.CmdletInfo

Name MemberType Definition
---- ---------- ----------
CommandType Property System.Management.Automation.
DefaultParameterSet Property System.String DefaultParamete
Definition Property System.String Definition {get
HelpFile Property System.String HelpFile {get;}
ImplementingType Property System.Type ImplementingType
Module Property System.Management.Automation.
ModuleName Property System.String ModuleName {get
Name Property System.String Name {get;}
Noun Property System.String Noun {get;}
OutputType Property System.Collections.ObjectMode
Parameters Property System.Collections.Generic.Di
ParameterSets Property System.Collections.ObjectMode
PSSnapIn Property System.Management.Automation.
Verb Property System.String Verb {get;}
Visibility Property System.Management.Automation.

Cmdlet MetaData

Proxy Cmdlet

• APIs to create cmdlets to proxy other cmdlets

–Cmdlet => metadata

–Program metadata

– Add/Remove parameters & validation attributes

–Generate a script cmdlet

–Hide the original cmdlet

• New signature or semantics for an existing cmdlet

Exchange in the Cloud

• 10(000),000s of admins using CLIs and Web GUIs

• Some paid, some free => different set of cmdlets

• All go to the same (virtual) server but can only
operate on their data

•Have LiveIDs but are doing actions which require
Admin privs

How Exchange Does it

• PowerShell hosted via IIS application

• LiveID maps to database of capabilities – cmdlets,
parameters, validation attributes

• NoLanguage Runspace created w/Admin privs

• Capabilities used to generate Proxy Cmdlets

PowerShell Openness

• Used IEEE Std 1003.2-1992 Posix Shell as a starting point for the
language and VMS DCL syntax for CLI

• Submitted to the DMTF SMASH committee to standardize CLI and
scripting for ALL Oses and HW management
– Converted from VMS to UNIX CLI syntax to increase probably of

standardization

• PASH – Open Source PowerShell

• PowerShell Remoting Protocol [MS-PSRP] published as an Open
Specification
– http://msdn.microsoft.com/en-us/library/dd357801(PROT.10).aspx

• Language licensed under the Community Promise
– http://blogs.msdn.com/b/powershell/archive/2011/04/16/powershell-

language-now-licensed-under-the-community-promise.aspx

http://msdn.microsoft.com/en-us/library/dd357801(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd357801(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd357801(PROT.10).aspx
http://blogs.msdn.com/b/powershell/archive/2011/04/16/powershell-language-now-licensed-under-the-community-promise.aspx
http://blogs.msdn.com/b/powershell/archive/2011/04/16/powershell-language-now-licensed-under-the-community-promise.aspx
http://blogs.msdn.com/b/powershell/archive/2011/04/16/powershell-language-now-licensed-under-the-community-promise.aspx
http://blogs.msdn.com/b/powershell/archive/2011/04/16/powershell-language-now-licensed-under-the-community-promise.aspx
http://blogs.msdn.com/b/powershell/archive/2011/04/16/powershell-language-now-licensed-under-the-community-promise.aspx
http://blogs.msdn.com/b/powershell/archive/2011/04/16/powershell-language-now-licensed-under-the-community-promise.aspx
http://blogs.msdn.com/b/powershell/archive/2011/04/16/powershell-language-now-licensed-under-the-community-promise.aspx
http://blogs.msdn.com/b/powershell/archive/2011/04/16/powershell-language-now-licensed-under-the-community-promise.aspx
http://blogs.msdn.com/b/powershell/archive/2011/04/16/powershell-language-now-licensed-under-the-community-promise.aspx
http://blogs.msdn.com/b/powershell/archive/2011/04/16/powershell-language-now-licensed-under-the-community-promise.aspx
http://blogs.msdn.com/b/powershell/archive/2011/04/16/powershell-language-now-licensed-under-the-community-promise.aspx
http://blogs.msdn.com/b/powershell/archive/2011/04/16/powershell-language-now-licensed-under-the-community-promise.aspx
http://blogs.msdn.com/b/powershell/archive/2011/04/16/powershell-language-now-licensed-under-the-community-promise.aspx
http://blogs.msdn.com/b/powershell/archive/2011/04/16/powershell-language-now-licensed-under-the-community-promise.aspx
http://blogs.msdn.com/b/powershell/archive/2011/04/16/powershell-language-now-licensed-under-the-community-promise.aspx

Q/A

16

Proposed Design

•OVAL Requirements

•Design Considerations

• Samples

•Outstanding Issues

Requirement Considerations

• Establishing a framework allows mixing of different
check approaches

• Providing built in support for value parameterization

• Leveraging an industry proven model for interactions
with XCCDF

• Requiring the simplest possible statements based upon
the cmdlet needed, the input parameters, and expected
output

• Leading to atomic checks that focus on single low-level
configuration statements

Design Considerations

• Build OVAL definitions using a constrained PowerShell
interface instead of allowing arbitrary scripting

• The new PowerShell identifiers must be similar to the
existing OVAL type identifiers

• Keep the initial design/schema simple and cover major
scenarios

• Build the initial definition with future extension in mind

• Complete data model and structure covers both GET
(security check/monitoring) and SET (deployment), not
format dependent

Microsoft Proposal with sample (1)

User scenario: collect Exchange server anti-spam update configuration

Proposed PowerShell Cmdlet

 > Get-AntiSpamUpdates -Identity contoso-server | Select-Object -Property
SpamSignatureUpdatesEnabled

Proposed SCAP

 <win-def:cmdlet_object id="oval:sample:obj:14" version="1" comment="check the
type of Microsoft Forefront Security for Exchange Server anti-spam updates that are
retrieved.">
 <modulename>Microsoft.Exchange.Configuration</modulename>
 <moduleid></moduleid>
 <moduleversion>1.0</moduleversion>
 <verb>Get</verb>
 <noun>AntiSpamUpdates</noun>
 <parameters>
 <property name="Identity">contoso-server</property>
 </parameters>
 <select>
 <property name="Property">SpamSignatureUpdatesEnabled</property>
 </select>
 </win-def:cmdlet_object>

Data model UI

Benefits of proposed design

• Structuralized data/model

• Simple and precise format

• Scalable

• Extendable

Microsoft Proposal with sample (2)

User Scenario: "Check all service hosts resource usage."

Proposed PowerShell Cmdlet
 > Get-Process -Name svchost | Select-Object -Property
NonpagedSystemMemorySize,PagedSystemMemorySize,PeakPagedMemorySize,PeakWorkingSet

Proposed SCAP
 <win-def:cmdlet_object xmlns="http://oval.mitre.org/XMLSchema/oval-definitions-6#PowerShell"
id="oval:sample:obj:2" version="1" comment="Check all service hosts resource usage.">
 <modulename>Microsoft.PowerShell.Management</modulename>
 <moduleversion>2.0</moduleversion>
 <verb>Get</verb>
 <noun>Process</noun>
 <parameters>
 <property name="Name">svchost</property>
 </parameters>
 <select>
 <property name="Property">
NonpagedSystemMemorySize,PagedSystemMemorySize,PeakPagedMemorySize,PeakWorkingSet</property>
 </select>
 </win-def:cmdlet_object>

Q/A

23

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S.
and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must
respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information

provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Page 24

