
- Open Vulnerability and Assessment Language -

Element Dictionary

� Schema: Core Common
� Version: 5.2
� Release Date: 31 January 2007

The following is a description of the common types that are shared across the different schemas within Open Vulnerability
and Assessment Language (OVAL). Each type is described in detail and should provide the information necessary to
understand what each represents. This document is intended for developers and assumes some familiarity with XML. A
high level description of the interaction between these type is not outlined here.

The OVAL Schema is maintained by The MITRE Corporation and developed by the public OVAL Community. For more
information, including how to get involved in the project and how to submit change requests, please visit the OVAL
website at http://oval.mitre.org.

== GeneratorType ==

The GeneratorType complex type defines an element that is used to hold information about when a particular OVAL
document was compiled, what version of the schema was used, waht tool compiled the document, and what version of that
tools was used..

Additional generator information is also allowed although it is not part of the official OVAL Schema. Individual
organizations can place generator information that they feel are important and these will be skipped during the validation.
All OVAL really cares about is that the stated generator information is there.

== MessageType ==

The MessageType complex type defines the structure for which messages are relayed from the data collection engine.
Each message is a text string that has an associated level attribute identifying the type of message being sent. These
messages could be error messages, warning messages, debug messages, etc. How the messages are used by tools and
whether or not they are displayed to the user is up to the specific implementation. Please refer to the description of the
MessageLevelEnumeration for more information about each type of message.

Child Elements Type MinOccurs MaxOccurs

product_name xsd:string 0 1

product_version xsd:string 0 1

schema_version xsd:decimal 1 1

timestamp xsd:dateTime 1 1

Attributes:

- level oval:MessageLevelEnumeration (optional -- default='info')

Simple Content xsd:string

-- CheckEnumeration --

The CheckEnumeration simple type defines acceptable check values, which determine how to evaluate multiple individual
cases. When used to define the relationship between objects and states, each check value defines how many of the
matching objects must satisfy the given state for the test to return true. When used to define the relationship between
multiple values of entities, each check value defines how many values must be true for the entity to return true. When used
to define the relationship between entities and multiple variable values, each check value defines how many variable
values must be true for the entity to return true.

Below are some tables that outline how each check attribute effects evaluation. The far left column identifies the check
attribute in question. The middle column specifies the different combinations of individual results that the check attribute
may bind together. (T=true, F=false, E=error, U=unknown, NE=not evaluated, NA=not applicable) For example, a 1+
under T means that one or more individual results are true, while a 0 under U means that zero individual results are
unknown. The last column specifies what the final result would be according to each combination of individual results.
Note that if the individual test is negated, then a true result is false and a false result is true, all other results stay as is.

Value Description

all A value of 'all' means that a test returns true if a matching object
exists and that all matching objects satisfy the data requirements
for a test to evaluate to true.

at least one A value of 'at least one' means that a test returns true if a matching
object exists and at least one matching object must satisfies the
data requirements for a test to evaluate to true.

none exist A value of 'none exists' means that a test evaluates to true if no
matching object exists that satisfy the data requirements.

only one A value of 'only one' means that a test evaluates to true if a
matching object exists and if one, and only one, matching object
satisfies the data requirements.

 || num of individual results ||

 check attr is || || final result is

 || T | F | E | U | NE | NA ||

---------------||-----------------------------||------------------

 || 1+ | 0 | 0 | 0 | 0 | 0+ || True

 || 0+ | 0+ | 0+ | 0+ | 0+ | 0+ || False

 ALL || 0+ | 0 | 1+ | 0+ | 0+ | 0+ || Error

 || 0+ | 0 | 0 | 1+ | 0+ | 0+ || Unknown

 || 0+ | 0 | 0 | 0 | 1+ | 0+ || Not Evaluated

 || 0 | 0 | 0 | 0 | 0 | 1+ || Not Applicable

---------------||-----------------------------||------------------

 || num of individual results ||

 check attr is || || final result is

 || T | F | E | U | NE | NA ||

---------------||-----------------------------||------------------

 || 1+ | 0+ | 0+ | 0+ | 0+ | 0+ || True

 || 0 | 0+ | 0 | 0 | 0 | 0+ || False

-- DatatypeEnumeration --

The DatatypeEnumeration simple type defines the legal datatypes that are used to describe the values of individual
entities. A value should be interpreted according to the specified type. This is most important during comparisons. For
example, is '21' less than '123'? will evaluate to true if the datatypes are 'int', but will evaluate to 'false' if the datatypes are
'string'. Another example is applying the 'equal' operation to '1.0.0.0' and '1.0'. With datatype 'string' they are not equal,
with datatype 'version' they are.

 AT LEAST ONE || 0 | 0+ | 1+ | 0+ | 0+ | 0+ || Error

 || 0 | 0+ | 0 | 1+ | 0+ | 0+ || Unknown

 || 0 | 0+ | 0 | 0 | 1+ | 0+ || Not Evaluated

 || 0 | 0 | 0 | 0 | 0 | 1+ || Not Applicable

---------------||-----------------------------||------------------

 || num of individual results ||

 check attr is || || final result is

 || T | F | E | U | NE | NA ||

---------------||-----------------------------||------------------

 || 1 | 0+ | 0 | 0 | 0 | 0+ || True

 || 2+ | 0+ | 0+ | 0+ | 0+ | 0+ || ** False **

 ONLY ONE || 0 | 0+ | 0 | 0 | 0 | 0+ || ** False **

 || 1- | 0+ | 1+ | 0+ | 0+ | 0+ || Error

 || 1- | 0+ | 0 | 1+ | 0+ | 0+ || Unknown

 || 1- | 0+ | 0 | 0 | 1+ | 0+ || Not Evaluated

 || 0 | 0 | 0 | 0 | 0 | 1+ || Not Applicable

---------------||-----------------------------||------------------

 || num of individual results ||

 check attr is || || final result is

 || T | F | E | U | NE | NA ||

---------------||-----------------------------||------------------

 || 0 | 0+ | 0 | 0 | 0 | 0+ || True

 || 1+ | 0+ | 0+ | 0+ | 0+ | 0+ || False

 NONE || 0 | 0+ | 1+ | 0+ | 0+ | 0+ || Error

 || 0 | 0+ | 0 | 1+ | 0+ | 0+ || Unknown

 || 0 | 0+ | 0 | 0 | 1+ | 0+ || Not Evaluated

 || 0 | 0 | 0 | 0 | 0 | 1+ || Not Applicable

---------------||-----------------------------||------------------

Value Description

binary The binary datatype is used to represent data that is in raw (non-
printable) form. Values should be hex strings. Expected operations
within OVAL for binary values are 'equals' and 'not equals'.

boolean The boolean datatype represent standard boolean data, either true
or false. Expected operations within OVAL for boolean values are
'equals' and 'not equals'.

evr_string The evr_string datatype represents the epoch, version, and release
fields as a single version string. It has the form
"EPOCH:VERSION-RELEASE". Comparisons involving this
datatype should follow the algorithm of librpm's rpmvercmp()
function. Expected operations within OVAL for evr_string values
are 'equals', 'not equals', 'greater than', 'greater than or equal', 'less

than', and 'less than or equal'.

float The float datatype describes standard float data. Expected
operations within OVAL for float values are 'equals', 'not equals',
'greater than', 'greater than or equal', 'less than', and 'less than or
equal'.

ios_version The ios_version datatype describes Cisco IOS Train strings. These
are in essence version strings for IOS. Please refer to Cisco's IOS
Reference Guide for information on how to compare different
Trains as they follow a very specific pattern. Expected operations
within OVAL for ios_version values are 'equals', 'not equals',
'greater than', 'greater than or equal', 'less than', and 'less than or
equal'.

int The int datatype describes standard integer data. Expected
operations within OVAL for int values are 'equals', 'not equals',
'greater than', 'greater than or equal', 'less than', 'less than or equal',
'bitwise and', and 'bitwise or'.

string The string datatype describes standard string data. Expected
operations within OVAL for string values are 'equals', 'not equals',
'pattern match'.

version

The version datatype represents a value that is a hierarchical list of
integers separated by a single character delimiter. Expected
operations within OVAL for version values are 'equals', 'not
equals', 'greater than', 'greater than or equal', 'less than', and 'less
than or equal'.

For example '#.#.#' or '#-#-#-#' where the numbers to the left are
more significant than the numbers to the right. When performing
an 'equals' operation on a version datatype, you should first check
the left most number for equality. If that fails, then the values are
not equal. If it succeeds, then check the second left most number
for equality. Continue checking the numbers from left to right
until the last number has been checked. If, after testing all the
previous numbers, the last number is equal then the two versions
are equal. When performing other operations, such as 'less than',
'less than or equal', 'greater than, or 'greater than or equal', similar
logic as above is used. Start with the left most number and move
from left to right. For each number, check if it is less than the
number you are testing against. If it is, then the version in question
is less than the version you are testing against. If the number is
equal, then move to check the next number to the right. For
example, to test if 5.7.23 is less than or equal to 5.8.0 you first
compare 5 to 5. They are equal so you move on to compare 7 to 8.
7 is less than 8 so the entire test succeeds and 5.7.23 is 'less than
or equal' to 5.8.0. The difference between the 'less than' and 'less
than or equal' operations is how the last number is handled. If the
last number is reached, the check should use the given operation
(either 'less than' and 'less than or equal') to test the number. For
example, to test if 4.23.6 is greater than 4.23.6 you first compare 4
to 4. They are equal so you move on to compare 23 to 23. They
are equal so you move on to compare 6 to 6. This is the last
number in the version and since 6 is not greater than 6, the entire
test fails and 4.23.6 is not greater than 4.23.6.

-- FamilyEnumeration --

The FamilyEnumeration simple type is a listing of families that OVAL supports at this time.

-- MessageLevelEnumeration --

The MessageLevelEnumeration simple type defines the different levels associated with a message. There is no specific
criteria about which messages get assigned which level. This is completely arbitrary and up to the content producer to
decide what is an error message and what is a debug message.

-- OperationEnumeration --

The OperationEnumeration simple type defines acceptable operations. Each operation defines how to compare entities
against their actual values.

Version strings with a different number of components shall be
padded with zeros to make them the same size. For example, if the
version strings '1.2.3' and '6.7.8.9' are being compared, then the
short one should be padded to become '1.2.3.0'.

Value Description

ios

macos

unix

windows

Value Description

debug Debug messages should only be displayed by a tool when run in
some sort of verbose mode.

error Error messages should be recorded when there was an error that
did not allow the collection of specific data.

fatal A fatal message should be recorded when an error causes the
failure of more than just a single piece of data.

info Info messages are used to pass useful information about the data
collection to a user.

warning A warning message reports something that might not correct but
information was still collected.

Value Description

equals The 'equals' operation returns true if the actual value on the system
is equal to the stated entity.

not equal The 'not equal' operation returns true if the actual value on the
system is not equal to the stated entity.

-- OperatorEnumeration --

The OperatorEnumeration simple type defines acceptable operators. Each operator defines how to evaluate multiple
arguments.

greater than The 'greater than' operation returns true if the actual value on the
system is greater than the stated entity.

less than The 'less than' operation returns true if the actual value on the
system is less than the stated entity.

greater than or equal The 'greater than or equal' operation returns true if the actual value
on the system is greater than or equal to the stated entity.

less than or equal The 'less than or equal' operation returns true if the actual value on
the system is less than or equal to the stated entity.

bitwise and The 'bitwise and' operation is used to determine if a specific bit is
set. It returns true if performing a BITWISE AND with the binary
representation of the stated entity against the binary representation
of the actual value on the system results in a binary value that is
equal to the binary representation of the stated entity. For
example, assuming a datatype of 'int', if the actual integer value of
the setting on your machine is 6 (same as 0110 in binary), then
performing a 'bitwise and' with the stated integer 4 (0100) returns
4 (0100). Since the result is the same as the state mask, then the
test returns true. If the actual value on your machine is 1 (0001),
then the 'bitwise and' with the stated integer 4 (0100) returns 0
(0000). Since the result is not the same as the stated mask, then the
test fails.

bitwise or The 'bitwise or' operation is used to determine if a specific bit is
not set. It returns true if performing a BITWISE OR with the
binary representation of the stated entity against the binary
representation of the actual value on the system results in a binary
value that is equal to the binary representation of the stated entity.
For example, assuming a datatype of 'int', if the actual integer
value of the setting on your machine is 6 (same as 0110 in binary),
then performing a 'bitwise or' with the stated integer 14 (1110)
returns 14 (1110). Since the result is the same as the state mask,
then the test returns true. If the actual value on your machine is 1
(0001), then the 'bitwise or' with the stated integer 14 (1110)
returns 15 (1111). Since the result is not the same as the stated
mask, then the test fails.

pattern match The 'pattern match' operation allows an item to be tested against a
regular expression. Patterns must comply with POSIX std 1003.2-
1992, Section 2.8 - 'Regular Expression Notation'. Patterns can use
both Basic and Extended Regular Expression notation.

Value Description

AND The AND operator produces a true result if every argument is true.
If one or more arguments are false, the result of the AND is false.
If one or more of the arguments are unknown, and if none of the
arguments are false, then the AND operator produces a result of
unknown.

Below are some tables that outline how each operator effects evaluation. The far left column identifies the operator in
question. The middle column specifies the different combinations of individual results that the operator may bind together.
(T=true, F=false, E=error, U=unknown, NE=not evaluated, NA=not applicable) For example, a 1+ under T means that one
or more individual results are true, while a 0 under U means that zero individual results are unknown. The last column
specifies what the final result would be according to each combination of individual results. Note that if the individual test
is negated, then a true result is false and a false result is true, all other results stay as is.

OR The OR operator produces a true result if one or more arguments
is true. If every argument is false, the result of the OR is false. If
one or more of the arguments are unknown, and if none of true
arguments are true, then the OR operator produces a result of
unknown.

XOR XOR is defined to be true if an odd number of its arguments are
true, and false otherwise. If any of the arguments are unknown,
then the XOR operator produces a result of unknown.

 || num of individual results ||

 operator is || || final result is

 || T | F | E | U | NE | NA ||

---------------||-----------------------------||------------------

 || 1+ | 0 | 0 | 0 | 0 | 0+ || True

 || 0+ | 1+ | 0+ | 0+ | 0+ | 0+ || False

 AND || 0+ | 0 | 1+ | 0+ | 0+ | 0+ || Error

 || 0+ | 0 | 0 | 1+ | 0+ | 0+ || Unknown

 || 0+ | 0 | 0 | 0 | 1+ | 0+ || Not Evaluated

 || 0 | 0 | 0 | 0 | 0 | 1+ || Not Applicable

---------------||-----------------------------||------------------

 || num of individual results ||

 operator is || || final result is

 || T | F | E | U | NE | NA ||

---------------||-----------------------------||------------------

 || 1+ | 0+ | 0+ | 0+ | 0+ | 0+ || True

 || 0 | 1+ | 0 | 0 | 0 | 0+ || False

 OR || 0 | 0+ | 1+ | 0+ | 0+ | 0+ || Error

 || 0 | 0+ | 0 | 1+ | 0+ | 0+ || Unknown

 || 0 | 0+ | 0 | 0 | 1+ | 0+ || Not Evaluated

 || 0 | 0 | 0 | 0 | 0 | 1+ || Not Applicable

---------------||-----------------------------||------------------

 || num of individual results ||

 operator is || || final result is

 || T | F | E | U | NE | NA ||

---------------||-----------------------------||------------------

 ||odd | 0+ | 0 | 0 | 0 | 0+ || True

 ||even| 0+ | 0 | 0 | 0 | 0+ || False

 XOR || 0+ | 0+ | 1+ | 0+ | 0+ | 0+ || Error

 || 0+ | 0+ | 0 | 1+ | 0+ | 0+ || Unknown

 || 0+ | 0+ | 0 | 0 | 1+ | 0+ || Not Evaluated

 || 0 | 0 | 0 | 0 | 0 | 1+ || Not Applicable

---------------||-----------------------------||------------------

-- DefinitionIDPattern --

Define the format for acceptable OVAL Definition ids. An urn format is used with the id starting with the word oval
followed by a unique string, followed by the three letter code 'def', and ending with an integer.

oval:[A-Za-z0-9_\-\.]+:def:[1-9][0-9]*

-- ObjectIDPattern --

Define the format for acceptable OVAL Object ids. An urn format is used with the id starting with the word oval followed
by a unique string, followed by the three letter code 'obj', and ending with an integer.

oval:[A-Za-z0-9_\-\.]+:obj:[1-9][0-9]*

-- StateIDPattern --

Define the format for acceptable OVAL State ids. An urn format is used with the id starting with the word oval followed
by a unique string, followed by the three letter code 'ste', and ending with an integer.

oval:[A-Za-z0-9_\-\.]+:ste:[1-9][0-9]*

-- TestIDPattern --

Define the format for acceptable OVAL Test ids. An urn format is used with the id starting with the word oval followed
by a unique string, followed by the three letter code 'tst', and ending with an integer.

oval:[A-Za-z0-9_\-\.]+:tst:[1-9][0-9]*

-- VariableIDPattern --

Define the format for acceptable OVAL Variable ids. An urn format is used with the id starting with the word oval
followed by a unique string, followed by the three letter code 'var', and ending with an integer.

oval:[A-Za-z0-9_\-\.]+:var:[1-9][0-9]*

-- ItemIDPattern --

Define the format for acceptable OVAL Item ids. The format is an integer. An item id is used to identify the different
items found in an OVAL System Characteristics file.

-- EmptyStringType --

The EmptyStringType simple type is a restriction of the built-in string simpleType. The only allowed string is the empty
string with a length of zero. This type is used by certain elements to allow empty content when non-string data is accepted.

See the EntityIntType in the OVAL Definition Schema for an example of its use.

