
THE MITRE CORPORATION 

The OVAL® Language 
Specification 

Version 5.11 
 

Jonathan Baker, Matthew Hansbury, Daniel Haynes 

12/18/2014 

 

 

 

  

Information security is a function that consumes significant organizational resources, and is growing 
increasingly difficult to manage. One of the biggest problems is the lack of standardization between the 
sources of security information, and the tools that consume that information, as well as between the 
various tools themselves. Often, the exchange of security information is time critical, but is hampered by 
the variety of incompatible formats in which it is represented. The Open Vulnerability and Assessment 
Language (OVAL®) is an international, information security, community standard to promote open and 
publicly available security content, and to standardize the transfer of this information across the entire 
spectrum of security tools and services. By standardizing the three main steps of the assessment 
process: representing configuration information of systems for testing; analyzing the system for the 
presence of the specified machine state; and reporting the results of the assessment, the OVAL 
Language provides a common and structured format that facilitates collaboration and information 
sharing among the information security community as well as interoperability among tools. This 
document defines the use cases, requirements, data model, and processing model for the OVAL 
Language. 



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

2 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

Acknowledgements  
The authors, Jonathan Baker, Matthew Hansbury, and Daniel Haynes of the MITRE Corporation wish to 

thank the OVAL Community for its assistance in contributing and reviewing this document. The authors 

would like to acknowledge Dave Waltermire of NIST for his contribution to the development of this 

document. 

Trademark Information  
OVAL, the OVAL logo, and CVE are registered trademarks and CCE and CPE are trademarks of The MITRE 

Corporation. All other trademarks are the property of their respective owners. 

Warnings  
MITRE PROVIDES OVAL "AS IS" AND MAKES NO WARRANTY, EXPRESS OR IMPLIED, AS TO THE 

ACCURACY, CAPABILITY, EFFICIENCY, MERCHANTABILITY, OR FUNCTIONING OF OVAL. IN NO EVENT WILL 

MITRE BE LIABLE FOR ANY GENERAL, CONSEQUENTIAL, INDIRECT, INCIDENTAL, EXEMPLARY, OR SPECIAL 

DAMAGES, RELATED TO OVAL OR ANY DERIVATIVE THEREOF, WHETHER SUCH CLAIM IS BASED ON 

WARRANTY, CONTRACT, OR TORT, EVEN IF MITRE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH 

DAMAGES.1 

Feedback 
The MITRE Corporation welcomes any feedback regarding the OVAL Language Specification. Please send 

any comments, questions, or suggestions to the public h±![ 5ŜǾŜƭƻǇŜǊΩǎ CƻǊǳƳ at oval-developer-

list@lists.mitre.org or directly to the OVAL Moderator at oval@mitre.org.2 

  

                                                           

1 For detailed information see https://oval.mitre.org/about/termsofuse.html 
2 For more information about the OVAL Language, please visit https://oval.mitre.org/ 

https://oval.mitre.org/about/termsofuse.html
https://oval.mitre.org/


 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

3 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

Table of Contents  
Acknowledgements ....................................................................................................................................... 2 

Trademark Information ................................................................................................................................. 2 

Warnings ....................................................................................................................................................... 2 

Feedback ....................................................................................................................................................... 2 

1 Introduction ........................................................................................................................................ 12 

1.1 The OVAL Language .................................................................................................................... 13 

1.2 Document Conventions .............................................................................................................. 13 

1.3 Document Structure.................................................................................................................... 14 

2 Use Cases for the OVAL Language ...................................................................................................... 15 

2.1 Security Advisory Distribution .................................................................................................... 15 

Use Case Scenario: Publishing an Advisory ......................................................................................... 15 

2.2 Vulnerability Management ......................................................................................................... 16 

Use Case Scenario: Leveraging a Standardized Security Advisory ...................................................... 17 

Use Case Scenario: Collaborating on the Development of a Vulnerability Check .............................. 17 

Use Case Scenario: Sharing Vulnerability Assessment Results ........................................................... 17 

2.3 Patch Management ..................................................................................................................... 17 

Use Case Scenario: Leveraging a Standardized Patch Check .............................................................. 18 

Use Case Scenario: Patching a Known Vulnerability ........................................................................... 18 

2.4 Configuration Management ........................................................................................................ 18 

Use Case Scenario: Configuration Guidance Distribution ................................................................... 19 

Use Case Scenario: Authoritative Policy Reuse................................................................................... 19 

Use Case Scenario: Compliance Reporting ......................................................................................... 20 

2.5 System Inventory ........................................................................................................................ 20 

Use Case Scenario: Operating System Upgrade ................................................................................. 20 

2.6 Malware Artifact Hunting ........................................................................................................... 21 

Use Case Scenario: Detecting Compromised Systems ........................................................................ 21 

Use Case Scenario: Sharing Checks for Threat Indicators ................................................................... 21 

2.7 Network Access Control (NAC) ................................................................................................... 22 

Use Case Scenario: Minimum Secure Configuration Baseline Enforcement ...................................... 22 

2.8 Auditing and Centralized Audit Validation .................................................................................. 22 



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

4 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

Use Case Scenario: Keeping Track of Change ..................................................................................... 22 

2.9 Security Information Management Systems (SIMS) ................................................................... 23 

Use Case Scenario: Data Aggregation ................................................................................................. 23 

3 Requirements for the OVAL Language ................................................................................................ 23 

3.1 Basic Requirements ..................................................................................................................... 23 

 Expressing Expected Configuration State ........................................................................... 23 

 Representing Observed Configuration State ...................................................................... 23 

 Expressing Assessment Results ........................................................................................... 23 

 Content Integrity and Authenticity ..................................................................................... 23 

3.2 Detailed Requirements ............................................................................................................... 24 

 General Content Requirements .......................................................................................... 24 

 OVAL Definition Requirements ........................................................................................... 24 

 OVAL System Characteristics Requirements ....................................................................... 24 

 OVAL Results Requirements ............................................................................................... 25 

4 Data Model for the OVAL Language ................................................................................................... 25 

4.1 Data Model Conventions ............................................................................................................ 27 

 UML Diagrams ..................................................................................................................... 27 

 Property Table Notation ..................................................................................................... 27 

 Primitive Data Types ........................................................................................................... 28 

4.2 OVAL Common Model................................................................................................................. 28 

 GeneratorType .................................................................................................................... 28 

 MessageType ...................................................................................................................... 29 

 CheckEnumeration .............................................................................................................. 29 

 ClassEnumeration ............................................................................................................... 29 

 SimpleDatatypeEnumeration .............................................................................................. 30 

int ........................................................................................................................................................ 32 

ipv4_address ....................................................................................................................................... 32 

 ComplexDatatypeEnumeration........................................................................................... 33 

 DatatypeEnumeration ......................................................................................................... 34 

 ExistenceEnumeration ........................................................................................................ 34 

 FamilyEnumeration ............................................................................................................. 34 



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

5 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

 MessageLevelEnumeration ................................................................................................. 34 

 OperationEnumeration ....................................................................................................... 35 

 OperatorEnumeration ......................................................................................................... 36 

 Definition, Test, Object, State, and Variable Identifiers ..................................................... 36 

 ItemIDPattern ..................................................................................................................... 37 

 EmptyStringType ................................................................................................................. 37 

 NonEmptyStringType .......................................................................................................... 37 

 Any ...................................................................................................................................... 37 

 Signature ............................................................................................................................. 38 

4.3 OVAL Definitions Model .............................................................................................................. 38 

 oval_definitions ................................................................................................................... 38 

 DefinitionsType ................................................................................................................... 39 

 DefinitionType ..................................................................................................................... 39 

 MetadataType ..................................................................................................................... 40 

 AffectedType ....................................................................................................................... 40 

 ReferenceType .................................................................................................................... 41 

 NotesType ........................................................................................................................... 41 

 CriteriaType ......................................................................................................................... 41 

 CriterionType ...................................................................................................................... 42 

 ExtendDefinitionType ......................................................................................................... 43 

 TestsType ............................................................................................................................ 43 

 TestType .............................................................................................................................. 43 

 ObjectRefType ..................................................................................................................... 45 

 StateRefType ....................................................................................................................... 45 

 ObjectsType ........................................................................................................................ 45 

 ObjectType .......................................................................................................................... 45 

 set ........................................................................................................................................ 46 

 filter ..................................................................................................................................... 47 

 StatesType ........................................................................................................................... 47 

 StateType ............................................................................................................................ 47 

 VariablesType ...................................................................................................................... 48 



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

6 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

 VariableType ....................................................................................................................... 48 

 external_variable ................................................................................................................ 49 

 PossibleValueType .............................................................................................................. 49 

 PossibleRestrictionType ...................................................................................................... 50 

 RestrictionType ................................................................................................................... 50 

 constant_variable................................................................................................................ 50 

 ValueType............................................................................................................................ 50 

 local_variable ...................................................................................................................... 51 

 ComponentGroup ............................................................................................................... 51 

 LiteralComponentType ....................................................................................................... 52 

 ObjectComponentType ....................................................................................................... 52 

 VariableComponentType .................................................................................................... 52 

 FunctionGroup .................................................................................................................... 53 

 ArithmeticFunctionType ..................................................................................................... 54 

 BeginFunctionType.............................................................................................................. 54 

 ConcatFunctionType ........................................................................................................... 55 

 CountFunctionType ............................................................................................................. 55 

 EndFunctionType ................................................................................................................ 55 

 EscapeRegexFunctionType .................................................................................................. 56 

 SplitFunctionType ............................................................................................................... 56 

 SubstringFunctionType ....................................................................................................... 57 

 TimeDifferenceFunctionType .............................................................................................. 57 

 UniqueFunctionType ........................................................................................................... 58 

 RegexCaptureFunctionType ................................................................................................ 58 

 ArithmeticEnumeration ...................................................................................................... 59 

 DateTimeFormatEnumeration ............................................................................................ 59 

 FilterActionEnumeration ..................................................................................................... 60 

 SetOperatorEnumeration ................................................................................................... 60 

 EntityAttributeGroup .......................................................................................................... 60 

 EntitySimpleBaseType ......................................................................................................... 61 

 EntityComplexBaseType...................................................................................................... 61 



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

7 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

 EntityObjectIPAddressType................................................................................................. 61 

 EntityObjectIPAddressStringType ....................................................................................... 62 

 EntityObjectAnySimpleType ............................................................................................... 62 

 EntityObjectBinaryType ...................................................................................................... 62 

 EntityObjectBoolType ......................................................................................................... 62 

 EntityObjectFloatType ........................................................................................................ 63 

 EntityObjectIntType ............................................................................................................ 63 

 EntityObjectStringType ....................................................................................................... 63 

 EntityObjectRecordType ..................................................................................................... 63 

 EntityObjectFieldType ......................................................................................................... 64 

 EntityStateSimpleBaseType ................................................................................................ 64 

 EntityStateComplexBaseType ............................................................................................. 65 

 EntityStateIPAddressType ................................................................................................... 65 

 EntityStateIPAddressStringType ......................................................................................... 65 

 EntityStateAnySimpleType .................................................................................................. 65 

 EntityStateBinaryType ......................................................................................................... 65 

 EntityStateBoolType ............................................................................................................ 66 

 EntityStateFloatType ........................................................................................................... 66 

 EntityStateIntType .............................................................................................................. 66 

 EntityStateEVRStringType ................................................................................................... 66 

 EntityStateVersionType ....................................................................................................... 66 

 EntityStateFileSetRevisionType ........................................................................................... 67 

 EntityIOSVersionType ......................................................................................................... 67 

 EntityStateStringType ......................................................................................................... 67 

 EntityStateRecordType ....................................................................................................... 68 

 EntityStateFieldType ........................................................................................................... 68 

4.4 OVAL Variables Model ................................................................................................................ 69 

 oval_variables ..................................................................................................................... 69 

 VariablesType ...................................................................................................................... 69 

 VariableType ....................................................................................................................... 70 

4.5 OVAL System Characteristics Model ........................................................................................... 70 



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

8 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

 SystemInfoType ................................................................................................................... 71 

 InterfacesType..................................................................................................................... 71 

 InterfaceType ...................................................................................................................... 71 

 CollectedObjectsType ......................................................................................................... 72 

 ObjectType .......................................................................................................................... 72 

 VariableValueType .............................................................................................................. 73 

 ReferenceType .................................................................................................................... 73 

 SystemDataType ................................................................................................................. 73 

 ItemType ............................................................................................................................. 73 

 EntityAttributeGroup .......................................................................................................... 74 

 FlagEnumeration ................................................................................................................. 74 

 StatusEnumeration ............................................................................................................. 75 

 EntityItemSimpleBaseType ................................................................................................. 75 

 EntityItemComplexBaseType .............................................................................................. 75 

 EntityItemIPAddressType .................................................................................................... 76 

 EntityItemIPAddressStringType .......................................................................................... 76 

 EntityItemAnySimpleType ................................................................................................... 76 

 EntityItemBinaryType ......................................................................................................... 76 

 EntityItemBoolType ............................................................................................................ 77 

 EntityItemFloatType ............................................................................................................ 77 

 EntityItemIntType ............................................................................................................... 77 

 EntityItemStringType .......................................................................................................... 77 

 EntityItemRecordType ........................................................................................................ 77 

 EntityItemFieldType ............................................................................................................ 78 

 EntityItemVersionType ....................................................................................................... 78 

 EntityItemFileSetRevisionType ........................................................................................... 78 

 EntityItemIOSVersionType .................................................................................................. 78 

 EntityItemEVRStringType .................................................................................................... 79 

4.6 OVAL Results Model .................................................................................................................... 79 

 DirectivesType ..................................................................................................................... 80 

 DefaultDirectivesType ......................................................................................................... 81 



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

9 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

 ClassDirectivesType ............................................................................................................. 81 

 DirectiveType ...................................................................................................................... 82 

 ResultsType ......................................................................................................................... 82 

 SystemType ......................................................................................................................... 82 

 DefinitionType ..................................................................................................................... 83 

 CriteriaType ......................................................................................................................... 84 

 CriterionType ...................................................................................................................... 84 

 ExtendDefinitionType ......................................................................................................... 85 

 TestType .............................................................................................................................. 86 

 TestedItemType .................................................................................................................. 88 

 TestedVariableType ............................................................................................................ 88 

 ContentEnumeration .......................................................................................................... 88 

 ResultEnumeration ............................................................................................................. 89 

4.7 OVAL Directives Model ............................................................................................................... 89 

5 Processing Model for the OVAL Language .......................................................................................... 90 

5.1 Producing OVAL Definitions ........................................................................................................ 91 

 Reuse of Definition, Test, Object, State, and Variable ........................................................ 92 

 Tracking Change .................................................................................................................. 92 

 Metadata ............................................................................................................................. 92 

 Content Integrity and Authenticity ..................................................................................... 92 

5.2 Producing OVAL System Characteristics ..................................................................................... 92 

 System Information ............................................................................................................. 93 

 Collected Objects ................................................................................................................ 93 

 Conveying System Data without OVAL Objects .................................................................. 94 

 Recording System Data and OVAL Items ............................................................................ 94 

 Content Integrity and Authenticity ..................................................................................... 97 

5.3 Producing OVAL Results .............................................................................................................. 97 

 Definition Evaluation ........................................................................................................... 97 

 Test Evaluation .................................................................................................................... 99 

 OVAL Object Evaluation .................................................................................................... 103 

 OVAL State Evaluation ...................................................................................................... 108 



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

10 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

 OVAL Variable Evaluation ................................................................................................. 110 

 Common Evaluation Concepts .......................................................................................... 117 

int ...................................................................................................................................................... 122 

ipv4_address ..................................................................................................................................... 122 

 Masking Data .................................................................................................................... 128 

 Entity Casting .................................................................................................................... 128 

6 XML Representation ......................................................................................................................... 129 

6.1 Signature Support ..................................................................................................................... 130 

6.2 XML Extensions ......................................................................................................................... 130 

6.3 ElementMapType ...................................................................................................................... 130 

6.4 Official OVAL Component Models ............................................................................................ 131 

6.5 Use of xsi:nil .............................................................................................................................. 132 

6.6 Validation Requirements .......................................................................................................... 132 

Appendix A ς Extending the OVAL Language Data Model ........................................................................ 133 

OVAL Component Models ..................................................................................................................... 133 

OVAL Definitions Model .................................................................................................................... 133 

OVAL System Characteristics Model ................................................................................................. 135 

Extension Points within the OVAL Definitions Model ........................................................................... 135 

Generator Information...................................................................................................................... 135 

OVAL Definition Metadata ................................................................................................................ 135 

Extension Points within the OVAL System Characteristics Model ........................................................ 135 

Generator Information...................................................................................................................... 135 

System Information........................................................................................................................... 136 

OVAL Results Model .............................................................................................................................. 136 

Generator Information...................................................................................................................... 136 

Appendix B - OVAL Language Versioning Policy ....................................................................................... 137 

Appendix C - OVAL Language Deprecation Policy ..................................................................................... 137 

Appendix D - Regular Expression Support ................................................................................................ 138 

Supported Regular Expression Syntax .................................................................................................. 138 

Metacharacters ................................................................................................................................. 138 

Greedy Quantifiers ............................................................................................................................ 138 



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

11 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

Reluctant Quantifiers ........................................................................................................................ 139 

Escape Sequences ............................................................................................................................. 139 

Character Classes .............................................................................................................................. 139 

Zero Width Assertions ....................................................................................................................... 139 

Extensions ......................................................................................................................................... 139 

Version 8 Regular Expressions .......................................................................................................... 139 

Appendix E ς Normative References ........................................................................................................ 139 

Appendix F - Change Log ........................................................................................................................... 141 

Appendix G - Terms and Acronyms ........................................................................................................... 142 

Terms .................................................................................................................................................... 142 

Acronyms .............................................................................................................................................. 143 

 

  



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

12 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

1 Introduction  
Information security is a function that consumes significant organizational resources, and is growing 

increasingly difficult to manage. One of the biggest problems is the lack of standardization between the 

sources of security information, and the tools that consume that information, as well as between the 

various tools themselves. Often, the exchange of security information is time critical, but is hampered by 

the variety of incompatible formats in which it is represented. 

This lack of standardization gives rise to many challenges across the information security community. 

Once such challenge is the ability to obtain the information necessary to detect the presence of a 

vulnerability. Generally, security advisories are released for a specific issue as a text document and often 

do not contain all of the information necessary to determine if the vulnerability exists on a specific 

system or not. This leaves the IT Security Professional with the task of investigating all available sources 

regarding the vulnerability and then trying to piece together the details for detecting the issue. 

The next challenge involves the need for vulnerability content teams to reverse-engineer security 

advisories such that they can develop tests for their vulnerability and remediation tools. Often times, 

the content teams are writing vulnerability content for software that they are not intimately familiar 

with meaning the methodology used to detect the presence of a vulnerability is based on the 

interpretation of an individual analyst. As a result, different approaches are taken for different tools 

when searching for the presence of a vulnerability which leads to conflicting results on the same system. 

Once again, the burden falls upon the IT Security Professional to deconflict the results by examining the 

individual approaches taken by each of the tools and, if possible, decide which is correct. 

Another challenge for the IT Security Professional is the usability of security configuration information. 

For organizations publishing security configuration information, there are often multiple repositories of 

configuration information, multiple ways in which to manipulate that data, and in some cases, complex 

precedence relationships between the data. It is time-consuming and error-prone for the IT Security 

Professional to read a configuration document, interpret its meaning with respect to a specific 

configuration setting, and then apply that knowledge to an actual system to determine an answer. 

Organizations cannot rely on a single tool to provide a complete view of the systems on their network. 

Multiple tools are needed and, if they are from different vendors, it is very likely that they will use 

different formats for representing data inhibiting interoperability. This requires the IT Security 

Professional to correlate the data produced by the tools in order to obtain a complete view of the 

systems on the network. It may also be necessary for the data to be manually converted into a format 

that is usable by another tool which can also be a tedious and error-prone process. 

What the industry requires is a standardized method for representing the configuration state of 

computer system, comparing it against some known state, and expressing the results of that 

comparison. The representation of this information must easily facilitate its consumption by a software 

tool. The advantage of such a standard is that it will: 



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

13 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

¶ Significantly shorten the time between the official announcement of an issue and the ability of a 

tool to check for it. 

¶ Bring consistency and transparency to the results produced by security scanning tools. 

¶ Assist in the exchange of information between security tools. 

¶ Reduce the need for IT Security Professionals to learn the proprietary languages of each of their 

tools, and instead allow them to learn a single language that is understood by all the tools. 

This document presents the OVAL Language as a standard that fulfills these needs and requirements. 

1.1 The OVAL Language 
The Open Vulnerability and Assessment Language (OVAL®) is an international, information security, 

community standard to promote open and publicly available security content, and to standardize the 

transfer of this information across the entire spectrum of security tools and services. The OVAL 

Language, developed by a broad spectrum of industry, academia, and government organizations from 

around the world, standardizes the three main steps of the assessment process: OVAL System 

Characteristics for representing the configuration information of systems for testing; OVAL Definitions 

for expressing a specific machine state; and OVAL Results for reporting the results of the assessment. By 

doing so, the three core components of the OVAL Language serve as the framework and vocabulary of 

the OVAL Language and provide: 

¶ A simple and straightforward approach for determining if a vulnerability, software application, 

configuration issue, or patch exists on a given system. 

¶ A standard format that outlines the necessary security-relevant configuration information and 

encodes the precise details of a specific issue. 

¶ An open alternative to closed, proprietary, and replicated efforts. 

¶ An effort that is supported by a community of security experts, system administrators, and 

software developers from industry, government, and academia. 

All of which leads to a common and structured format that facilitates collaboration and information 

sharing among the information security community as well as interoperability among security tools. 

1.2 Document Conventions  
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", 

"RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 

2119.[16] 

The following font and font style conventions are used throughout the remainder of this document: 

¶ The Courier New font is used for writing constructs in the OVAL Language Data Model. 

Example: generator  

¶ The ΨƛǘŀƭƛŎΣ ǿƛǘƘ ǎƛƴƎƭŜ ǉǳƻǘŜǎΩ font is used for noting values for OVAL Language properties. 

Example: ΨŘƻŜǎ ƴƻǘ ŜȄƛǎǘΩ 



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

14 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

This document uses the concept of namespaces3 to logically group OVAL constructs throughout both the 

Data Model section of the document, as well as other parts of the specification. The format of these 

namespaces is prefix : element , where the prefix is the namespace component, and the element is 

the name of the qualified construct. The following table lists the namespaces used in this document: 

Data Model Namespace Description Example 

OVAL Common oval The OVAL Common data model 
that captures all of the common 
constructs used in OVAL. 

oval :GeneratorType  

OVAL 
Definitions 

oval-def The OVAL Definitions data model 
that defines the core framework 
constructs for creating OVAL 
Definitions. 

oval - def: TestType  

OVAL Results oval-res The OVAL Results data model 
that captures all the constructs 
used to communicate assessment 
results. 

oval - res:ResultsType  

OVAL Variables oval-var The OVAL Variables data model, 
used to define all constructs used 
to create OVAL Variables. 

oval - var:Variable Type  

OVAL 
Directives 

oval-dir The OVAL Directives data model, 
which defines the constructs 
used to create OVAL Directives. 

oval - dir: oval_d irectives  

OVAL System 
Characteristics 

oval-sc The OVAL System Characteristics 
data model, which defines the 
constructs used to capture the 
data collected on a target 
system. 

oval - sc: Item Type  

External ext This namespace is used to 
identify those constructs that are 
defined outside the OVAL 
Language. 

ext:Signature  

1.3 Document Structure  
This document serves as the specification for the OVAL Language defining the use cases, requirements, 

data model, and processing model which is organized into the following sections: 

¶ Section 1 ς Introduction 

¶ Section 2  ς Use Cases for the OVAL Language 

¶ Section 3 ς Requirements for the OVAL Language 

¶ Section 4 ς Data Model for the OVAL Language 

                                                           

3 Namespaces (computer science): http://en.wikipedia.org/wiki/Namespace_(computer_science) 

http://en.wikipedia.org/wiki/Namespace_(computer_science)


 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

15 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

¶ Section 5 ς Processing Model for the OVAL Language 

¶ Section 6 ς XML Representation 

¶ Appendix A ς Extending the OVAL Language Data Model 

¶ Appendix B ς OVAL Language Versioning Policy 

¶ Appendix C ς OVAL Language Deprecation Policy 

¶ Appendix D ς Regular Expression Support 

¶ Appendix E ς References 

¶ Appendix F ς Change Log 

¶ Appendix G ς Terms and Acronyms 

2 Use Cases for the OVAL Language 
OVAL Use Cases define the intended best practice usage of the standard. The current set of supported 

OVAL Use Cases are described below including one or more detailed use case scenarios for each use 

case. Additional use cases will be documented as they emerge through the continued operational 

application of OVAL. 

2.1 Security Advisory Distribution  
Security advisories are published by vendors and security researchers as product vulnerabilities are 

discovered. Security advisories generally contain the information needed to detect the presence of the 

vulnerable product on a system. These advisories are leveraged by alerting services and vulnerability 

scanning products to raise awareness of the latest issues that might affect individuals and organizations 

using the vulnerable products. One acknowledged need within the security industry is for application 

and operating system vendors, and other authoritative organizations, to publish vulnerability 

information in a standard, machine-readable format. The benefit of this is two-fold. First, it provides 

scanning products with immediate access to actionable content that can be used to assess the security 

posture of a system. Second, it moves the authoring of the technical details of a vulnerability from the 

reverse engineering efforts of the implementing organization (e.g., scanner-product developer) to a 

more authoritative source: the developer of the vulnerable product. 

Use Case Scenario: Publishing an Advisory 

In this scenario, a software vendor receives a report of an undisclosed vulnerability along with exploit 

code from a member of the security community. The vendor examines the report and the exploit code 

and confirms that there is a vulnerability in their software. The vendor further investigates the 

vulnerability to determine what versions of the software are affected and on what platforms. The 

vendor reserves a Common Vulnerabilities and Exposures (CVE®) Identifier4 for the vulnerability and 

creates a standardized check for the vulnerability in the form of an OVAL Definition. This new OVAL 

                                                           

4 Common Vulnerabilities and Exposures (CVE): https://cve.mitre.org 

https://cve.mitre.org/


 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

16 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

Definition includes the list of affected platforms and products, a reference to the reserved CVE 

Identifier, and a description of the vulnerability. The software vendor adds tests to check for the 

vulnerable software on the relevant platforms. Once complete, the OVAL Definition is signed to ensure 

integrity and authenticity and tested to ensure that it accurately detects all known vulnerable versions 

of the software. Finally, the software vendor publishes a new security advisory for the vulnerability 

including the reserved CVE Identifier and the OVAL Definition that will detect the presence of the 

vulnerability.  

LƳƳŜŘƛŀǘŜƭȅ ŀŦǘŜǊ ǇǳōƭƛŎŀǘƛƻƴΣ ƻǊƎŀƴƛȊŀǘƛƻƴǎ ōŜƎƛƴ ǘƻ ŘƻǿƴƭƻŀŘ ǘƘŜ ǎŜŎǳǊƛǘȅ ŀŘǾƛǎƻǊȅΩǎ OVAL Definition, 

verify its signature to ensure that it was not modified in transit, and use it in their vulnerability scanning 

tool of choice to determine whether or not their systems are vulnerable. 

2.2 Vulnerability Management  
Vulnerability management is the process of identifying the vulnerabilities in a system and prioritizing 

them according to their severity. Currently, organizations that develop vulnerability management 

products need to employ a team of content developers. This team investigates vulnerabilities as they 

become known, gathering all of the available information for a given vulnerability, and running various 

tests against live systems to examine the parameters that indicate the presence of a vulnerability. Once 

a vulnerability is understood, this team develops a check that will indicate the presence of the 

vulnerability on a system for use in their produŎǘΦ ¢ƘŜ ǊŜǎǳƭǘƛƴƎ ŎƘŜŎƪǎ ŀǊŜ ǘƘŜƴ ŘƛǎǘǊƛōǳǘŜŘ ǘƻ ǾŜƴŘƻǊΩǎ 

customers so that they can assess their systems and take action based on the vulnerability management 

results. All of these tasks must be completed under a very strict time requirement and are repeated 

across nearly every organization that develops and offers a vulnerability management product. 

For vulnerability management product vendors, having vulnerability information structured in a 

standard format allows them to quickly consume data from multiple sources. These vendors can share 

vulnerability checks with each other and collaborate on developing the best possible check for a given 

issue. If the initial security advisory includes a standardized check for the issue, these vendors can 

automatically consume that data. This will allow the vendor to refocus resources away from content 

generation to tasks that enhance the functionality of their product while distributing higher quality 

checks more quickly to their customers. 

CǊƻƳ ǘƘŜ ǇǊƻŘǳŎǘ ŎǳǎǘƻƳŜǊΩǎ Ǉerspective, the primary requirement for having a standard content 

format is that it demystifies the vulnerability management process and provides them with the ability to 

do an apples-to-apples comparison of the products. When conducting product comparisons, given a 

specific set of definitions, each product tested should return the same result. If this is not the case, it is 

no longer a result of the products taking different approaches to detecting a vulnerability, and removes 

the burden from the customer to determine which product they think returns the most accurate results. 

The end result is that the customer can focus more on selecting a product with the features that best 

meet their needs, and less on the more difficult problem of which product does the correct job of 

detecting vulnerabilities. Lastly, having a well-documented, standard format provides users with the 



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

17 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

information they need to be able to understand the details of an issue, and to determine how a specific 

product is conducting its business. 

Use Case Scenario: Leveraging a Standardized Security Advisory 

An operating system vendor releases a new set of security advisories for its platform as OVAL 

Definitions. ! ǎȅǎǘŜƳ ŀŘƳƛƴƛǎǘǊŀǘƻǊ Ǌǳƴǎ ǘƘŜ ƻǊƎŀƴƛȊŀǘƛƻƴΩǎ ǾǳƭƴŜǊŀōƛƭƛǘȅ ƳŀƴŀƎŜƳŜƴǘ ǘƻƻƭ ǿƘƛŎƘ 

retrieves the OVAL Definitions and verifies its signature. The vulnerability management tool then 

collects the attributes required to make an assertion about whether or not the system is in a vulnerable 

state and includes this information in the OVAL System Characteristics. Next, the vulnerability 

management tool evaluates the OVAL System Characteristics against the OVAL Definitions and expresses 

the findings in the OVAL Results. 

Use Case Scenario: Collaborating on the Development of a Vulnerability Check  

A new critical vulnerability is disclosed by an application vendor and the initial security advisory does not 

include an authoritative standardized check for the vulnerability. A vulnerability management product 

vendor quickly develops and distributes an OVAL Definition with a check for the presence of the 

vulnerability on the platforms the vendor supports for its customers. The vendor shares this new check 

with a forum of other vulnerability management vendors and industry experts in the form of an OVAL 

Definition. The OVAL Definition is extended by another vendor to include detailed checking information 

for additional platforms in order to make the vulnerability check complete for all known vulnerable 

platforms. The resulting OVAL Definition is again shared with the industry forum. A security expert 

participating in the forum notices that under some circumstances the OVAL Definition will detect the 

vulnerability when in fact it does not exist (a false positive). The security expert corrects this defect in 

the OVAL Definition and once again shares this information with the forum. The forum members have 

collaborated in developing a thorough, accurate, standardized check for the vulnerability and leveraged 

the resulting OVAL Definition in their products and services. 

Use Case Scenario: Sharing Vulnerability Assessment Results 

A vulnerability management product, using an OVAL Definition, detects the presence of a vulnerability 

on a system and generates the OVAL Results that record this finding. The OVAL Results are provided to 

ǘƘŜ ƻǊƎŀƴƛȊŀǘƛƻƴΩǎ ǎŜŎǳǊƛǘȅ ŘŀǎƘōƻŀǊŘ ǿƘŜǊŜ ƛǘ ƛǎ ǇǊƻŎŜǎǎŜŘΦ 5ǳŜ ǘƻ ǘƘŜ ǎŜǾŜǊƛǘȅ ƻŦ ǘƘŜ ǾǳƭƴŜǊŀōƛƭƛǘȅ ŀƴŘ 

availability of a patch it is determined that the affected system must be patched. The OVAL Results are 

then provided as an input to tƘŜ ƻǊƎŀƴƛȊŀǘƛƻƴΩǎ ǇŀǘŎƘ ƳŀƴŀƎŜƳŜƴǘ ǘƻƻƭ ǿƘŜǊŜ ǘƘŜ ŀŦŦŜŎǘŜŘ ǎȅǎǘŜƳ ƛǎ 

identified and the appropriate patch for the vulnerability is identified by its CVE Identifier and applied to 

the system. The system is no longer in a vulnerable state. 

2.3 Patch Management 
Patch management is the process of identifying the security issues and software updates that affect a 

system, applying the patches that resolve these issues, and verifying that the patches were successfully 

installed. Ensuring that systems are properly patcƘŜŘ ƛǎ ŀ ƳŀƧƻǊ ŎƻƴŎŜǊƴ ŀƳƻƴƎ ƻǊƎŀƴƛȊŀǘƛƻƴǎ ŀǎ ƛǘΩǎ ŀ 

leading cause for compromised systems. Patch management tools must have a detailed understanding 

of what it means for a given patch to have been properly installed on a system to ensure that systems 



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

18 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

are properly patched. As a result, patch management vendors employ teams of analysts to reverse 

engineer patches and fully understand the impact of applying a given patch to a system. These analysts 

must develop and maintain checks for each patch their product supports. 

For the patch management vendor community, having patch checking information structured in a 

standard format allows them to quickly consume data from multiple sources. These vendors can share 

patch checks with each other and collaborate on developing the best possible check for a given patch. If 

the patch is distributed with a standardized check for the patch these vendors can automatically 

consume that data. This will allow the vendor to refocus resources away from content generation to 

tasks that enhance the functionality of their product while distributing higher quality patch checks more 

quickly to their customers. 

Use Case Scenario: Leveraging a Standardized Patch Check 

An operating system vendor releases a new set of patches for its platform and includes standardized 

patch checks as OVAL DefinitionsΦ ! ǎȅǎǘŜƳ ŀŘƳƛƴƛǎǘǊŀǘƻǊ Ǌǳƴǎ ǘƘŜ ƻǊƎŀƴƛȊŀǘƛƻƴΩǎ ǇŀǘŎƘ ƳŀƴŀƎŜƳŜƴǘ 

tool which retrieves the OVAL Definitions and verifies its signature. The patch management tool then 

collects the attributes required to make an assertion about whether or not the system needs to be 

patched and includes this information in the OVAL System Characteristics. Next, the patch management 

tool evaluates the OVAL System Characteristics against the OVAL Definitions and expresses the findings 

in the OVAL Results. The patch management tool examines the OVAL Results and determines that a 

patch should be installed. The patch is installed and the system is no longer vulnerable. 

Use Case Scenario: Patching a Known Vulnerability  

!ƴ ƻǊƎŀƴƛȊŀǘƛƻƴΩǎ ǇŀǘŎƘ ƳŀƴŀƎŜƳŜƴǘ ǘƻƻƭ ŜȄŀƳƛƴŜǎ ǘƘŜ OVAL Results generated by a vulnerability 

management tool. The OVAL Results include summary information about all vulnerabilities that were 

checked and full details about the vulnerabilities that were found during a vulnerability assessment. The 

patch management tool uses the CVE Identifier associated with each OVAL Definition, included in the 

OVAL Results, to enumerate the available patches for the vulnerable software found on the system.  

2.4 Configuration Management  
¢ƘŜ ǇǊƻŎŜǎǎ ƻŦ ŎƻƴŦƛƎǳǊŀǘƛƻƴ ƳŀƴŀƎŜƳŜƴǘ ƛƴǾƻƭǾŜǎ ŜȄŀƳƛƴƛƴƎ ŀ ƳŀŎƘƛƴŜΩǎ ŎƻƴŦƛƎǳǊŀǘƛƻƴ ǎǘŀǘŜΣ 

comparing it against a known good or mandated configuration state, and reporting the results. There 

are a number of publicly available best practice configuration guides (e.g., the National Security Agency 

(NSA) Configuration Guides5, or the National Institute of Standards and Technology (NIST) National 

Checklist Program6), and many more developed specifically for individual organizations. In many cases, 

these guides exist in paper form only, and it is up to the IT Staff to translate the document into 

                                                           

5 The National Security Agency (NSA) Configuration Guides 
http://www.nsa.gov/ia/guidance/security_configuration_guides/ 
6 The National Institute of Standards and Technology (NIST) National Checklist Program 
http://checklists.nist.gov/ 

http://www.nsa.gov/ia/guidance/security_configuration_guides/
http://checklists.nist.gov/


 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

19 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

something that can be applied and enforced on a consistent basis. There are also automated solutions 

available that can scan a system for compliance against a given configuration and offer tailoring 

capabilities to suit the specific needs of an organization. Unfortunately, these products often rely upon 

proprietary data formats, making it difficult to introduce new configuration policies to the product or 

move data from one product to another. Finally, as with some of the use cases above, divesting the 

language from the product provides the product vendor with a broad repository of content and allows 

them to focus on functionality and features. 

Use Case Scenario: Configuration Guidance Distribution  

An operating system vendor releases a new version of its operating system. Along with the initial release 

of the operating system, detailed secure configuration guidance is included. This guidance is intended to 

ŀŎǘ ŀǎ ŀ ōŀǎŜƭƛƴŜ ŦƻǊ ǘƘŜ ƻǇŜǊŀǘƛƴƎ ǎȅǎǘŜƳΩǎ ǳǎŜǊǎ ǘƻ ǘŀƛƭƻǊ ŦƻǊ ǘƘŜƛǊ ƻǿƴ ŜƴǾƛǊƻƴƳŜƴǘǎ ŀƴŘ ǎŜŎǳǊƛǘȅ 

requirements. The operating system vendor includes the OVAL Definitions with this secure configuration 

guidance. Each OVAL Definition includes a reference to the relevant Common Configuration 

Enumeration (CCEϰ) Identifier7 for correlation with other guidance and policy frameworks, and can be 

used to check that a system is compliant ǿƛǘƘ ǘƘŜ ƻǇŜǊŀǘƛƴƎ ǎȅǎǘŜƳ ǾŜƴŘƻǊΩǎ ǊŜŎƻƳƳŜƴŘŀǘƛƻƴ ŦƻǊ ǘƘŀǘ 

ŎƻƴŦƛƎǳǊŀǘƛƻƴ ƛǘŜƳΦ ! ǎȅǎǘŜƳ ŀŘƳƛƴƛǎǘǊŀǘƻǊ Ǌǳƴǎ ǘƘŜ ƻǊƎŀƴƛȊŀǘƛƻƴΩǎ ŎƻƴŦƛƎǳǊŀǘƛƻƴ ƳŀƴŀƎŜƳŜƴǘ ǘƻƻƭ ŀƴŘ 

provides the OVAL Definitions as input. The configuration management tool then collects the attributes 

required to make an assertion about whether or not the system is complaint with the new operating 

system configuration guidance and includes this information in the OVAL System Characteristics. Next, 

the configuration management tool evaluates the OVAL System Characteristics against the OVAL 

Definitions and expresses the findings in the OVAL Results.  

Use Case Scenario: Authoritative Policy Reuse 

An organization has decided to develop a secure configuration guide for its desktop systems. Rather 

than create a new guide from scratch the organization leverages the secure configuration guidance 

recommended by the desktop operating system vendor. Since this policy was published in a 

standardized, machine readable format, with a collection of OVAL Definitions for checking compliance 

with the guide, the organization downloads the policy and tailors it to their environment. By way of 

example, the organization has a very strict password policy and needs to require a minimum password 

length of 14 characters on all desktop systems. Given that the operating system vendor recommended a 

minimum password length of 8 characters as a parameterized value, there is already an OVAL Definition 

in the published secure configuration for check minimum password length that can leveraged. The 

organization is able to simply tailor the minimum password length value setting it to 14 and reuse the 

rest of the checking logic in the OVAL Definition. The organization applies several other customizations 

to the policy by editing the published OVAL Definitions. Once completed, the organization inputs the 

new policy into its configuration management tool which begins monitoring all desktop systems for 

compliance with the policy.  

                                                           

7 Common Configuration Enumeration (CCE): https://cce.mitre.org 

https://cce.mitre.org/


 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

20 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

Use Case Scenario: Compliance Reporting  

An organization is required to be compliant with an official configuration baseline and report on the 

degree of compliance in order to meet the configuration baseline requirements of an industry body. This 

baseline has been expressed and published as a collection of OVAL Definitions and digitally signed by the 

authority that developed it. Free from needing to translate the baseline, the organization assesses its 

systems for compliance with the baseline ǳǎƛƴƎ ǘƘŜ ƻǊƎŀƴƛȊŀǘƛƻƴΩǎ ƻǿƴ ŎƻƴŦƛƎǳǊŀtion management tool 

and the OVAL Definitions. For each system, the configuration management tool collects the attributes 

required to make an assertion about the system and its compliance with the baseline. The tool then 

includes this information in the OVAL System Characteristics to represent the current state of the 

system. The configuration management tool evaluates the OVAL System Characteristics against the 

baseline defined by the OVAL Definitions and includes the differences between current system state and 

the desired configuration in the OVAL Results. The OVAL Results are then forwarded to the 

ƻǊƎŀƴƛȊŀǘƛƻƴΩǎ ŎƻƳǇƭƛŀƴŎŜ ǊŜǇƻǊǘƛƴƎ ǘƻƻƭ ǿƘŜǊŜ ǘƘŜ ǊŜǎǳƭǘǎ ƻŦ ǘƘŜ ǎȅǎǘŜƳΩǎ ŎƻƳǇliance to the baseline 

can be made available to the authorities to demonstrate compliance. 

2.5 System Inventory  
System inventory is the process of gathering a detailed listing of the applications installed on a given 

system. Large enterprises often have many versions of many applications running on wide variety 

operating systems. Organizations simply do not rely upon one vendor for all of the software that is 

running in their enterprises. This raises a considerable challenge when tracking software for licensing, 

vulnerability management, compliance, and other purposes. Application and operating system vendors 

need a standardized way to describe how to check for the presence of an application, and system 

inventory tool vendors need reach out to numerous application and operating system vendors for this 

information in order to accurately determine what is installed on a system. Currently, these system 

inventory tool vendors must develop their own checks for the presence of an application or operating 

system, which is often based on a best guess rather than authoritative knowledge of the system. 

Use Case Scenario: Operating System Upgrade 

An organization wants to upgrade its remaining systems to the newest version of an operating system. 

The organization tasks the system administrator with determining how many licenses need to be 

purchased. The system administrator downloads the OVAL Definitions that contain checks for all of the 

previous versions of the operating system along with references to Common Platform Enumeration 

(CPEϰ) Identifiers8 that correspond to the specific platform associated with a check. The system 

administrator then runs the system inventory tools across the organization using the downloaded OVAL 

Definitions. The system inventory tool collects the attributes required to make an assertion about the 

software installed on the system and includes it in the OVAL System Characteristics as a snapshot of the 

observed state of the system. Next, the system inventory tool compares the OVAL System 

Characteristics to the OVAL Definitions, and records the findings in the OVAL Results. Finally, the system 

                                                           

8 Common Platform Enumeration (CPE): https://cpe.mitre.org 

https://cpe.mitre.org/


 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

21 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

inventory tool forwards the OVAL Results to the ƻǊƎŀƴƛȊŀǘƛƻƴΩǎ ǊŜǇƻǊǘƛƴƎ ǘƻƻƭΦ ¢ƘŜ ǊŜǇƻǊǘƛƴƎ ǘƻƻƭ 

leverages the CPE Identifiers in the OVAL Results to provide detailed information about the number and 

types of earlier versions of the operating system that were found allowing the system administrator to 

see how many licenses are required for the upgrade. 

2.6 Malware Artifact Hunting  
Incident coordination centers, organizations, and other members of the security community are actively 

discussing malware and sharing low-level system details that can be used to detect potentially 

compromised systems. These details are commonly shared as prose documents that require translation 

into actionable content prior to being used for system assessment. The need for a standard format to 

encode malware artifacts is widely acknowledged, and its use by incident coordination centers would be 

widespread. 

Use Case Scenario: Detecting Compromised Systems 

An organization discovers that one of their systems has been compromised by some malicious software. 

Immediately, the organization tasks their forensics team with investigating the infected systems. During 

the investigation, the forensics team notices that the infected system contains certain files that have 

been modified and that a previously undisclosed vulnerability was used to gain access to the system. 

Realizing that there is no publicly available check for this vulnerability, the forensics team creates an 

OVAL Definition with tests to check for the presence of the modified files found during the investigation. 

5ŜǇŜƴŘƛƴƎ ƻƴ ǘƘŜ ŦƻǊŜƴǎƛŎ ǘŜŀƳΩǎ in-house tools the resulting OVAL Definition may be automatically 

generated from numerous possible sources including static analysis tool outputs or possibly hand 

written in the case where a more manual process was used to investigate the incident.  

Once complete, the forensics team quickly pushes the new OVAL Definition to their host-based security 

system in order to determine how widespread the attack on their infrastructure really is, before their 

anti-virus vendor has published updated signatures. The host-based security system collects the 

attributes required to determine if a system has been compromised records this information in the 

OVAL System Characteristics ǘƻ ŎŀǇǘǳǊŜ ǘƘŜ ǎȅǎǘŜƳΩǎ ŎǳǊǊŜƴǘ ǎǘŀǘŜΦ bŜȄǘΣ ǘƘŜ Ƙƻǎǘ-based security system 

compares the OVAL System Characteristics against the OVAL Definitions and records the differences in 

system state in the OVAL Results. Finally, the host-based security system forwards the OVAL Results to 

ǘƘŜ ƻǊƎŀƴƛȊŀǘƛƻƴΩǎ ǊŜǇƻǊǘƛƴƎ ǘƻƻƭ ǿƘŜǊŜ ǘƘŜ OVAL Results are leveraged to provide detailed information 

about the number of systems that have been compromised. Thus, enabling the forensics team to quickly 

quarantine and remediate the issue. 

Use Case Scenario: Sharing Checks for Threat Indicators 

An organization has in-depth knowledge about a system compromise and exactly what artifacts reside 

on a system after compromise. The organization exports an OVAL Definition from its in-house malware 

database with tests to check for the presence of these artifacts, modified files, and new registry keys, 

shares the resulting OVAL Definition with their partners. The partners run the OVAL Definition on their 

systems. The partner organizations quickly learn that they too have compromised systems and begin 

collaborating with each other in developing a strategy to remediate the affected systems. 



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

22 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

2.7 Network Access Control  (NAC) 
NAC is a technology that can be used to enforce endpoint configuration policies. Policy enforcement 

may result in a number of outcomes including, but not limited to, granting full network access, denying 

network access, or granting some form of limited access. Most NAC solutions allow for policy checking 

and enforcement both when an endpoint requests access to a network and on an ongoing basis to 

ensure continued policy conformance. NAC policies are often expressed in proprietary data formats, 

making it difficult to introduce new policies or share policies among NAC products. Finally, as with some 

of the use cases above, divesting the language from the NAC product provides the product vendor with 

a wider repository of content and allows them to focus more on functionality and features.  

Use Case Scenario: Minimum Secure Configuration Baseline Enforcement  

An organization has defined an endpoint configuration policy that requires a minimum secure 

configuration including the installation of antivirus software, activation and proper configuration of a 

host-based firewall, and current patch status for all major applications and the operating system. This 

policy is expressed as a collection of OVAL Definitions, where each OVAL Definition describes how to 

determine if an endpoint complies with a single requirement in the organizational policy. This set of 

OVAL Definitions is then distributed to the various NAC solutions that are in place within the enterprise 

allowing the organization to define the policy once in a standard format and distribute it to each NAC 

solution in place. The various NAC solutions begin enforcing endpoint policy compliance as described in 

the OVAL Definitions. 

2.8 Auditing and Centralized Audit Validation  
Audit validation is responsible for providing reports about the state of a machine at any given time in 

the past. There are two basic needs in this area. First and foremost is capturing machine configuration 

information at a level of granularity that allows an organization to monitor, track, and reconstruct the 

ǘǊŀƴǎƛǘƛƻƴ ƻŦ ŀ ǎȅǎǘŜƳΩǎ ŎƻƴŦƛƎǳǊŀǘƛƻƴ ŦǊƻƳ ƻƴŜ ǎǘŀǘŜ ǘƻ ŀƴƻǘƘŜǊΦ ¢ƘŜ ǎŜŎƻƴŘ ƴŜŜŘ ƛǎ ǘƘŀǘ ǘƘŜ Řŀǘŀ ōŜ 

stored in a standardized, data-centric format, thus ensuring that it is not bound to a specific product, 

which may or may not be available at the time it is necessary to review the data. 

Use Case Scenario: Keeping Track of Change 

An organization deploys a centralized audit validation system. When a new system joins the network, it 

ƛǎ ƛƳƳŜŘƛŀǘŜƭȅ ǎŎŀƴƴŜŘ ōȅ ǘƘŜ ƻǊƎŀƴƛȊŀǘƛƻƴΩǎ ǾǳƭƴŜǊŀōƛƭƛǘȅ ƳŀƴŀƎŜƳŜƴǘΣ ǇŀǘŎh management, and 

configuration management tools based on the most up-to-date security advisories, patches, and 

policies. The resulting OVAL Results, ŀǎǎƻŎƛŀǘŜŘ ǿƛǘƘ ǘƘŜ ǎŎŀƴǎΣ ǎŜǊǾŜ ŀǎ ǘƘŜ ǎȅǎǘŜƳΩǎ ƛƴƛǘƛŀƭ ǎǘŀǘŜ ƛƴ ǘƘŜ 

centralized audit validation system. From then on, the system is scanned once a week to determine if 

anything has changed. If changes are discovered since the last update, the centralized audit validation 

system is updated with the latest OVAL Results. If at any point in time between the scheduled scans, the 

system falls into or out of compliance or a new patch has been installed, the centralized audit validation 

system is immediately updated with the new OVAL Results. The centralized audit validation system now 

contains multiple sets of OVAL Results documenting the various state changes to the system over time. 



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

23 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

2.9 Security Information Management Systems (SIMS)  
SIMS integrate the output of a variety of security, auditing, and configuration products, as well as their 

ƻǿƴ ŀƎŜƴǘǎΣ ǘƻ ōǳƛƭŘ ŀ ŎƻƳǇǊŜƘŜƴǎƛǾŜ ǾƛŜǿ ƻŦ ǘƘŜ ǎŜŎǳǊƛǘȅ ǇƻǎǘǳǊŜ ƻŦ ŀƴ ƻǊƎŀƴƛȊŀǘƛƻƴΩǎ ƴŜǘǿƻǊƪΦ The 

fewer data formats the SIM needs to understand the more flexible and powerful the product can be. 

Standardizing the data exchange formats between products greatly simplifies the interoperability 

requirements and provides the end users with a wider array of applications to choose from.  

Use Case Scenario: Data Aggregation 

A security information management system vendor utilizes the OVAL Results generated by vulnerability 

management tools, patch management tools, configuration management tools, and any other tool that 

produces OVAL Results as a primary format for data coming into their system. By doing so, the system 

can consume data from an entire range of tools in a straightforward manner without the need to 

translate different formats, of like data, into a single format before it can be analyzed. 

3 Requirements  for the OVAL Language 
The following requirements have been developed based upon the goals of OVAL and the needs outlined 

in the use cases above. These requirements apply to the OVAL Language itself and establish the OVAL 

Language as the standardized framework for expressing the configuration state of computer systems. At 

the highest level are the Basic Requirements, which capture the essence of the goals and use cases. Each 

of these requirements is further expanded and refined into individual classes of requirements in the 

OVAL Definition Requirements, OVAL System Characteristics Requirements, and OVAL Results 

Requirements sections below. 

3.1 Basic Requirements  
The basic requirements listed in this section form the foundation of the OVAL Language and are further 

refined and expanded upon in the Detailed Requirements section of this document. 

 Expressing Expected Configuration State  

¶ The language MUST be capable of expressing the desired configuration state of a system. 

 Representing Observed Configuration State  

¶ The language MUST be capable of expressing the actual configuration state of a system. 

 Expressing Assessment Results 

¶ The language MUST be capable of expressing where the actual system configuration differs from 

the desired configuration. 

 Content Integrity and Authenticity  

The language MUST provide the ability to ensure the integrity and authenticity of all content written in 

the language. 



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

24 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

3.2 Detailed Requirements  
The detailed requirements expand upon the general requirements listed in the previous section.  

 General Content Requirements  

These general requirements apply to all content written in the language. 

¶ The language MUST require that all content specify the language version which it complies with. 

¶ The language MUST require that all content specify when it was created. 

¶ The language MUST allow content to contain information about the product name and version 

used to create the content. 

¶ The language MUST allow content to contain additional information that is relevant to the 

creation of the document. 

 OVAL Definition Requirements  

These requirements apply to OVAL Definitions and further refine the basic requirements listed above. 

¶ All major components of the language MUST be reusable. 

¶ Components of the language MUST have globally unique identifiers. 

¶ Component identifiers MUST be structured to allow individual organizations to dynamically 

create identifiers without relying on an outside source and be ensured that global uniqueness is 

maintained. 

¶ The language MUST allow for the exchange of collections of OVAL Definitions as a single unit of 

content. 

¶ A collection of OVAL Definitions MUST contain all of the individual components used by each 

definition in the collection. 

¶ The language MUST contain the structure and the means to create unbounded logical 

combinations of individual components. 

¶ The language MUST provide the ability to negate logical statements. 

¶ The language MUST allow tailoring of configuration values to meet organization or environment 

specific policies. 

¶ The language MUST allow the current configuration of a system to be used as the basis of 

further identifying configuration items to examine. 

¶ The language MUST provide a means to add an authoritative reference to an OVAL Definition. 

¶ An OVAL Test SHOULD be capable of testing all of the configuration parameters retrieved from a 

corresponding system element. 

¶ An OVAL Test SHOULD mirror, in name and structure, the configuration parameters retrieved 

from a system element. 

 OVAL System Characteristics Requireme nts 

These requirements apply to OVAL System Characteristics and further refine the basic requirements 

listed above. 



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

25 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

¶ OVAL System Characteristics MUST include sufficient asset identification information to uniquely 

identify the target system. 

¶ OVAL System Characteristics MUST allow for any additional asset identification information 

about the target system to be represented. 

¶ OVAL System Characteristics MUST provide an extensible model for representing items collected 

from a system. 

¶ OVAL System Characteristics MUST provide information about whether a specific item exists or 

does not exist on a system. 

¶ OVAL System Characteristics MUST allow for a clear linkage between the information that was 

found on a system and the information that was requested of the system. 

¶ OVAL System Characteristics MUST allow for the exchange of system configuration information 

without any dependency on other OVAL content. 

¶ OVAL System Characteristics MUST report the outcome of attempting to collect a specified set 

of system information.  

¶ OVAL System Characteristics MUST provide a means for tools to convey additional information 

(error messages, informational messages, etc.) related to attempts to collect system 

information. 

 OVAL Results Requirements 

These requirements apply to OVAL Results and further refine the basic requirements listed above. 

¶ OVAL Results MUST contain information that uniquely identifies the specific system being 

reported on. 

¶ OVAL Results MUST be capable of supporting different levels of detail in the reported results. 

¶ OVAL Results MAY include the OVAL Definitions that were evaluated. 

¶ OVAL Results MUST contain the analysis result for each OVAL Definition and each referenced 

OVAL component being reported upon. 

¶ OVAL Results MAY include the System Characteristics that were collected. 

4 Data Model for the OVAL Language 
The core components of the OVAL Language Data Model standardize the three main steps of the 

assessment process, specifically:  

1. Representing the configuration information of a system. 

2. Analyzing the system for the presence of a particular machine state.  

3. Reporting the results of the comparison between the specified machine state and the observed 

machine state. 

The OVAL Definitions Model defines an extensible framework for making an assertion about a system 

that is based upon a collection of logical statements. Each logical statement defines a specific machine 



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

26 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

state by identifying the data set on the system to examine and describing the expected state of that 

system data. Using the OVAL Definitions Model various assertions can be made about a system 

including: 

¶ Is the system in a vulnerable state? 

¶ Is a specific patch installed or missing from the system? 

¶ Is a certain piece of software installed on the system? 

¶ Is the system in compliance with a particular set of configuration guidance? 

The OVAL Variables Data Model defines all constructs used to create OVAL Variables and can be used, in 

conjunction with the OVAL Definitions Model, to externally specify values that can tailor content based 

on the OVAL Definitions Model at run-time. This tailoring can be applied to both the identification of 

which system data to examine and the description of the state of that system data. 

The OVAL System Characteristics Model provides a framework for representing low-level system 

configuration information that can be extended to support platform-specific constructs. The low-level 

system configuration information can include operating system properties, installed software, settings 

of installed software, operating system security settings, and other machine state. The low-level 

configuration information represented by the OVAL System Characteristics Model can be used to 

compare actual state against the expected machine state described by a set of OVAL Definitions.  

The OVAL Results Model is used to report the results of an evaluation of a set of systems based upon a 

set of OVAL Definitions leveraging the OVAL System Characteristics. In this way, the OVAL Results Model 

provides detailed information about the set of assertions that were evaluated, the observed states of 

the evaluated systems, and the detailed results of the evaluation. This model enables applications to 

consume this data, interpret it, and take the necessary actions to report on the evaluation results or 

take other actions (for example, install patches, alter system configuration settings, and/or take external 

precautions to limit access to the affected systems). The OVAL Results Model can be tailored using the 

OVAL Directives Model, which defines the constructs used to create OVAL Directives, to include various 

levels of detail which allows for verbose detailed result information or streamlined result information 

based on a specific use case. 

Lastly, many constructs and enumerations are reused throughout the different components in the OVAL 

Language Data Model. To facilitate reuse and avoid duplication, these common constructs and 

enumerations are represented in the OVAL Common Model. 

The dependencies between the various components of the OVAL Language Data Model are depicted 

below. 



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

27 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

Figure 4-1 Major Component Dependencies 

 

4.1 Data Model Conventions  
The following conventions are used throughout this data model section.  

 UML Diagrams 

The Data Model makes use of Unified Modeling Language (UML)9 diagrams where appropriate, to 

visually depict relationships for the OVAL Language constructs. Diagrams are included for any construct 

that inherits from other constructs or has a compositional relationship. The namespaces used in the 

diagrams map to those defined at the top of this document. 

 Property Table Notation  

Throughout the data model, tables are used to describe each data type. Each property table will consist 

of a column of property names to identify the property, a type column to reflect the datatype of the 

property, a multiplicity column to reflect the allowed number of occurrences of the property, and a 

description column that will describe the property. Values in the type column are either primitive 

datatypes or other types defied in this document. These values will be cross referenced to the base 

definition of their types. Below is an example property table. 

Table 4-1 Example Property Table 

Property Type Multiplicity  Description 

<PROPERTY NAME> <DATA TYPE> 0..1 <DESCRIPTION OF THE PROPERTY AND ANY 

                                                           

9 Unified Modeling Language - UML http://www.uml.org/  

OVAL 

Common

OVAL 

Variables

OVAL System 

Characteristics

OVAL 

Results

OVAL 

Directives

OVAL 

Definitions

http://www.uml.org/


 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

28 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

USAGE REQUIREMENTS FOR THE PROPERTY> 

 Primitive Data Types  

The following primitive datatypes are used in the OVAL Language. 

¶ binary ς Data of this type conforms to the World Wide Web Consortium (W3C) 

Recommendation for hex-encoded binary data [1]. 

¶ boolean ς Data of this type conforms to the W3C Recommendation for boolean data [2]. 

¶ double ς Data of this type conforms to the W3C Recommendation for double data [13]. 

¶ float ς Data of this type conforms to the W3C Recommendation for float data [3]. 

¶ int ς Data of this type conforms to the W3C Recommendation for integer data [4]. 

¶ string ς Data of this type conforms to the W3C Recommendation for string data [6]. 

¶ unsigned int ς Data of this type conforms to the W3C Recommendation for unsigned int data 

[15]. 

¶ URI ς Data of this type conforms to the W3C Recommendation for anyURI data [14]. 

¶ DateTime ς Data of this type represents a time value that conforms to the yyyy-mm-

ddThh:mm:ss format. 

4.2 OVAL Common Model 
The OVAL Common Model contains definitions for constructs and enumerations that are used 

throughout the other core models in the OVAL Language Data Model both eliminating duplication and 

facilitating reuse. 

 GeneratorType  

The Generator Type  provides a structure for recording information about how and when the OVAL 

Content was created, for what version of the OVAL Language it was created, and any additional 

information at the discretion of the content author.  

Property Type Multiplicity  Description 

product_name string 0..1 Entity that generated the OVAL Content. This value 
SHOULD be expressed as a CPE Name. 

product_version string 0..1 Version of the entity that generated the OVAL Content. 

schema_version double 1 Version of the OVAL Language that the OVAL Content is 
expected to validate against. 

timestamp  DateTime 1 The date and time of when the OVAL Content, in its 
entirety, was originally generated. This value is 
independent of the time at which any of the components 
of the OVAL Content were created. 

extension_point Any 0..* An extension point that allows for the inclusion of any 
additional information associated with the generation of 
the OVAL Content. 

 



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

29 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

The extension_point  property is not considered a part of the OVAL Language proper, but rather, 

an extension point that allows organizations to expand the OVAL Language to better suit their needs. 

For more information please see Appendix A ς Extending the OVAL Language Data Model 

 MessageType 

The MessageType  construct is used to relay messages from tools at run-time. The decision of how to 

use these messages is left to the tool developer as an implementation detail based upon the context in 

which the message is used. 

Property Type Multiplicity  Description 

level MessageLevelEnumeration  0..1 The level of the message. 
Default Value: ΨinfoΩ 

message string 1 The actual message relayed from the tool. 

 CheckEnumeration  

The CheckEnumeration  enumeration defines the acceptable values that can be used to determine 

the final result of an evaluation based on how many of the individual results that make up an evaluation 

are true. This enumeration is used in different contexts throughout the OVAL Language. See Section 

5.3.6.1 Check Enumeration Evaluation, of the OVAL Language Processing Model, for more information 

on how this enumeration is used. 

Enumeration Value Description 

all The final result is ΨtrueΩ only if all of the individual results under consideration are 
ΨtrueΩ. 

at least one The final result is ΨtrueΩ only if one or more of the individual results under 
consideration are ΨtrueΩ. 

none exist DEPRECATED (5.3) In Version 5.3 of the OVAL Language, the checking of existence 
and state were separated into two distinct checks CheckEnumeration  (state) 
and ExistenceEnumeration  (existence). Since CheckEnumeration  is 
now used to specify how many objects should satisfy a given state for a test to 
return true, and no longer used for specifying how many objects must exist for a 
test to return true, a value of 'none exist' is no longer needed. 
 
The final result is ΨtrueΩ only if zero of the individual results under consideration 
are ΨtrueΩ. 

none satisfy The final result is ΨtrueΩ only if zero of the individual results under consideration 
are ΨtrueΩ. 

only one The final result is ΨtrueΩ only if one of the individual results under consideration is 
ΨtrueΩ. 

 ClassEnumeration  

The ClassEnumeration  defines the different classes of OVAL Definitions where each class specifies 

the overall intent of the OVAL Definition.  



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

30 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

Enumeration 
Value 

Description 

compliance This class describes OVAL Definitions ǘƘŀǘ ŎƘŜŎƪ ǘƻ ǎŜŜ ƛŦ ŀ ǎȅǎǘŜƳΩǎ ǎǘŀǘŜ ƛǎ 
compliant with a specific policy. An evaluation result of ΨtrueΩ, for this class of OVAL 
Definitions, indicates that a system is compliant with the stated policy. 

inventory This class describes OVAL Definitions that check to see if a piece of software is 
installed on a system. An evaluation result of ΨtrueΩ, for this class of OVAL 
Definitions, indicates that the specified software is installed on the system. 

miscellaneous This class describes OVAL Definitions that do not belong to any of the other defined 
classes.  

patch This class describes OVAL Definitions that check to see if a patch should be installed 
on a system. An evaluation result of ΩǘrueΩ, for this class of OVAL Definitions, 
indicates that the specified patch should be installed on the system.  

vulnerability This class describes OVAL Definitions that check to see if the system is in a 
vulnerable state. An evaluation result of ΨtrueΩ, for this class of OVAL Definitions, 
indicates that the system is in a vulnerable state. 

 SimpleData typeEnumeration  

The Simple Data t ypeEnumeration  defines the legal simple datatypes that are used to describe 

the values in the OVAL Language. Simple datatypes are those that are based upon a string 

representation without additional structure. Each value in the SimpleData t ypeEnumeration  has 

an allowed set of operations listed in the table below. These operations are based upon the full list of 

operations which are defined in the OperationEnumeration . 

Enumeration 
Value 

Description 

binary Data of this type conforms to the W3C Recommendation for hex-encoded binary 
data [1]. 
 
Valid operations are: 

¶ equals 

¶ not equal 

boolean Data of this type conforms to the W3C Recommendation for boolean data [2]. 
 
Valid operations are: 

¶ equals 

¶ not equal 

evr_string Data of this type conforms to the format EPOCH:VERSION-RELEASE and comparisons 
involving this type MUST follow the algorithm of librpm's rpmvercmp() function.  
 
Valid operations are:  

¶ equals 

¶ not equal 

¶ greater than 

¶ greater than or equal 



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

31 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

¶ less than 

¶ less than or equal 

fileset_revision Data of this type conforms to the version string related to filesets in HP-UX. An 
example would be 'A.03.61.00'.  
 
Valid operations are: 

¶ equals 

¶ not equal 

¶ greater than 

¶ greater than or equal 

¶ less than 

¶ less than or equal 

float Data of this type conforms to the W3C Recommendation for float data [3].  
 
Valid operations are: 

¶ equals 

¶ not equal 

¶ greater than 

¶ greater than or equal 

¶ less than 

¶ less than or equal 

ios_version Data of this type conforms to Cisco IOS Train strings. These are in essence version 
strings for IOS. Please refer to Cisco's IOS Reference Guide for information on how to 
compare different Trains as they follow a very specific pattern.[17]  
 
Valid operations are: 

¶ equals 

¶ not equal 

¶ greater than 

¶ greater than or equal 

¶ less than 

¶ less than or equal 



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

32 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

int 
Data of this type conforms to the W3C Recommendation for integer data [4].  
 
Valid operations are:  

¶ equals 

¶ not equal 

¶ greater than 

¶ greater than or equal 

¶ less than 

¶ less than or equal 

¶ bitwise and 

¶ bitwise or 

ipv4_address 
The ipv4_address datatype represents IPv4 addresses and IPv4 address prefixes. Its 
value space consists of the set of ordered pairs of integers where the first element of 
each pair is in the range [0,2^32) (the representable range of a 32-bit unsigned int), 
and the second is in the range [0,32]. The first element is an address, and the second 
is a prefix length.  
 
The lexical space is dotted-quad CIDR-like notation ('a.b.c.d' where 'a', 'b', 'c', and 'd' 
are integers from 0-255), optionally followed by a slash ('/') and either a prefix length 
(an integer from 0-32) or a netmask represented in the dotted-quad notation 
described previously. Examples of legal values are '192.0.2.0', '192.0.2.0/32', and  
'192.0.2.0/255.255.255.255'. Additionally, leading zeros are permitted such that 
'192.0.2.0' is equal to '192.000.002.000'. If a prefix length is not specified, it is 
implicitly equal to 32. [19] 
 
Valid operations are: 

¶ equals 

¶ not equal 

¶ greater than 

¶ greater than or equal 

¶ less than 

¶ less than or equal 

¶ subset of 

¶ superset of 

ipv6_address The ipv6_address datatype represents IPv6 addresses and IPv6 address prefixes. Its 
value space consists of the set of ordered pairs of integers where the first element of 
each pair is in the range [0,2^128) (the representable range of a 128-bit unsigned 
int), and the second is in the range [0,128]. The first element is an address, and the 
second is a prefix length.  
 
The lexical space is CIDR notation given in IETF specification RFC 4291 for textual 
representations of IPv6 addresses and IPv6 address prefixes (see sections 2.2 and 
2.3). If a prefix-length is not specified, it is implicitly equal to 128. [5]. 
 
Valid operations are:  



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

33 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

¶ equals 

¶ not equal 

¶ greater than 

¶ greater than or equal 

¶ less than 

¶ less than or equal 

¶ subset of 

¶ superset of 

string Data of this type conforms to the W3C Recommendation for string data [6]. 
 
Valid operations are: 

¶ equals 

¶ not equal 

¶ case insensitive equals 

¶ case insensitive not equal 

¶ pattern match 

version Data of this type represents a value that is a hierarchical list of non-negative integers 
separated by a single character delimiter. Any single non-number character may be 
used as a delimiter and the delimiter may vary between component of a given 
version string.  
 
Valid operations are: 

¶ equals 

¶ not equal 

¶ greater than 

¶ greater than or equal 

¶ less than 

¶ less than or equal  

 ComplexDatatypeEnumeration  

The Complex Data t ypeEnumeration  defines the complex datatypes that are supported the OVAL 

Language. These datatypes describe the values with some structure beyond simple string like content. O 

One simple example of a complex dataytype is an address.  The address might be composed of a street, 

city, state, and zip code.  These for field together comprise the complete address. 

Each value in the Complex DatatypeEnumeration  has an allowed set of operations listed in the 

table below. These operations are based upon the full list of operations which are defined in the 

OperationEnumeration . 

Enumeration Value Description 

record Data of this type represents a collection of named fields and values.  
 
Valid operations are: 

¶ equals 



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

34 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

 DatatypeEnumeration  

The Data t ypeEnumeration  defines the complete set of all valid datatypes. This set is created as the 

union of the SimpleData t ypeEnumeration  and the ComplexData t ypeEnumeration . This 

type is provided for convenience when working with the OVAL Language. 

 ExistenceEnumeration  

The ExistenceEnumeration  defines the acceptable values that can be used to specify the 

expected number of components under consideration must exist.  

Enumeration Value Description 

all_exist The final existence result is ΨtrueΩ only if all of the components under 
consideration exist. 

any_exist The final existence result is ΨtrueΩ only if zero or more of the components under 
consideration exist.  

at_least_one_exists The final existence result is ΨtrueΩ only if one or more of the components under 
consideration exist. 

none_exist The final existence result is ΨtrueΩ only if zero of the components under 
consideration exist.  

only_one_exists The final existence result is ΨtrueΩ only if one of the components under 
consideration exist. 

 FamilyEnumeration  

The FamilyEnumeration  defines the high-level family that an operating system belongs to. 

Enumeration Value Description 

catos This value describes Cisco CatOS operating systems. 

ios This value describes Cisco IOS operating systems. 

macos This value describes Apple Mac OS operating systems. 

pixos This value describes Cisco PIX operating systems. 

undefined This value is reserved for operating systems where the high-level family 
is not available in the current enumeration. 

unix This value describes UNIX operating systems. 

vmware_infrastructure This value describes the VMWare Infrastructure. 

windows This value describes Microsoft Windows operating systems. 

 MessageLevelEnumeration  

The MessageLevelEnumeration  defines the different levels that can be associated with a 

message. 

Enumeration Value Description 

debug This level is reserved for messages that should only be displayed when the tool 
is run in verbose mode. 

error This level is reserved for messages where an error was encountered, but the 
tool could continue execution. 



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

35 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

fatal This level is reserved for messages where an error was encountered and the 
tool could not continue execution. 

info This level is reserved for messages that contain informational data.  

warning This level is reserved for messages that indicate that a problem may have 
occurred.  

 OperationEnumeration  

The OperationEnumeration  defines the acceptable operations in the OVAL Language. The precise 

meaning of an operation is dependent on the datatype of the values under consideration. See Section 

5.3.6.3.1 Datatype and Operation Evaluation for additional information. 

Enumeration Value Description 

equals This operation evaluates to ΨtrueΩ if the actual value is equal to the stated 
value. 

not equal This operation evaluates to ΨtrueΩ if the actual value is not equal to the stated 
value. 

case insensitive 
equals 

This operation evaluates to ΨtrueΩ if the actual value is equal to the stated value 
when performing a case insensitive comparison. 

case insensitive not 
equal 

This operation evaluates to ΨtrueΩ if the actual value is not equal to the stated 
value when performing a case insensitive comparison. 

greater than This operation evaluates to ΨtrueΩ if the actual value is greater than the stated 
value. 

less than This operation evaluates to ΨtrueΩ if the actual value is less than the stated 
value. 

greater than or equal This operation evaluates to ΨtrueΩ if the actual value is greater than or equal to 
the stated value. 

less than or equal This operation evaluates to ΨtrueΩ if the actual value is less than or equal to the 
stated value. 

bitwise and This operation evaluates to ΨtrueΩ if the result of the BITWISE AND operation 
between the binary representation of the stated value and the actual value is 
equal to the binary representation of the stated value. This operation is used 
to determine if a specific bit in a value is set. 

bitwise or This operation evaluates to ΨtrueΩ if the result of the BITWISE OR operation 
between the binary representation of the stated value and the actual value is 
equal to the binary representation of the stated value. This operation is used 
to determine if a specific bit in a value is not set. 

pattern match This operation evaluates to ΨtrueΩ if the actual value matches the stated regular 
expression. The OVAL Language supports a common subset of the Perl 5 
Compatible Regular Expression Specification. See Appendix D Regular 
Expression Support for more information about regular expression support in 
the OVAL Language. 

subset of This operation evaluates to ΨtrueΩ if the actual set is a subset of the stated set. 

superset of This operation evaluates to ΨtrueΩ if the actual set is a superset of the stated 
set.  



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

36 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

 OperatorEnumeration  

The OperatorEnumeration  defines the acceptable logical operators in the OVAL Language.  See 

Section 5.3.6.2Operator Enumeration Evaluation for additional information. 

Enumeration Value Description 

AND This operator evaluates to ΨtrueΩ only if every argument is ΨtrueΩ. 

ONE This operator evaluates to ΨtrueΩ only if one argument is ΨtrueΩ. 

OR This operator evaluates to ΨtrueΩ only if one or more arguments are ΨtrueΩ. 

XOR This operator evaluates to ΨtrueΩ only if an odd number of arguments are ΨtrueΩ. 

 Definition, Test, Object, State, and Variable Identifiers  

The identifiers used for OVAL Definitions, OVAL Tests, OVAL Objects, OVAL States, and OVAL Variables 

have a common structure based upon an Unified Resource Name (URN)10 format with a type component 

that distinguishes one type of identifier from another. Each identifier has four components that are 

ǎŜǇŀǊŀǘŜŘ ōȅ ŀ ΨΥΩ ŀƴŘ ŀǊŜ ǊŜǇǊŜǎŜƴǘŜŘ ƛƴ ǘƘŜ ŦƻƭƭƻǿƛƴƎ ŦƻǊƳŀǘΥ 

<PREFIX>:<NAMESPACE>:<TYPE>:<ID> 

These components are explained below:  

¶ Prefix ς ¢ƘŜ ǇǊŜŦƛȄ ƛǎ ŀƭǿŀȅǎ άƻǾŀƭέΦ 

¶ Namespace ς The namespace to which the identifier belongs.  

¶ Type ς For of the id. The allowed valueǎ ŀǊŜ άŘŜŦέ ŦƻǊ h±![ 5ŜŦƛƴƛǘƛƻƴΣ άǘǎǘέ ŦƻǊ h±![ ¢ŜǎǘΣ άƻōƧέ 

ŦƻǊ h±![ hōƧŜŎǘΣ άǎǘŜέ ŦƻǊ h±![ {ǘŀǘŜΣ ŀƴŘ άǾŀǊέ ŦƻǊ h±![ ±ŀǊƛŀōƭŜΦ 

¶ ID Value ς The integer value of the identifier. 

OVAL Definition, OVAL Test, OVAL Object, OVAL State, and OVAL Variable IDs are globally unique. Each 

ID MUST NOT be used more than once within the known body of OVAL Content. 

The namespace portion of an ID SHOULD be represented as the reverse Domain Name System (DNS)11 

name of the organization that manages the content. Using a reverse DNS name provides a hint to the 

OVAL Community about the origin of the content and allows organizations to manage their own 

collections of IDs. 

OVAL Definition, OVAL Test, OVAL Object, OVAL State, and OVAL Variable IDs SHOULD NOT contain any 

semantics. IDs are not intended to convey any meaning.  

Once an OVAL Definition, OVAL Test, OVAL Object, OVAL State, or OVAL Variable IDs is assigned it 

SHOULD NOT be reused for any other OVAL Definition, OVAL Test, OVAL Object, OVAL State, or OVAL 

Variable. 

                                                           

10 Unified Resource Name (URN): http://www.ietf.org/rfc/rfc3406.txt  
11 Domain Name System (DNS): http://tools.ietf.org/html/rfc1035 

http://www.ietf.org/rfc/rfc3406.txt
http://tools.ietf.org/html/rfc1035


 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

37 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

4.2.13.1 DefinitionIDPattern 

The DefinitionIDPattern  defines the URN format associated with OVAL Definition identifiers. All 

OVAL Definition identifiers MUST conform to the following regular expression: 

oval:[A-Za-z0-9_\ -\ .]+:def:[1-9][0-9]* 

4.2.13.2 ObjectIDPattern 

The ObjectIDPattern  defines the URN format associated with OVAL Object identifiers. All OVAL 

Object identifiers MUST conform to the following regular expression: 

oval:[A-Za-z0-9_\ -\ .]+:obj:[1-9][0-9]* 

4.2.13.3 StateIDPattern 

The StateIDPattern  defines the URN format associated with OVAL State identifiers. All OVAL State 

identifiers MUST conform to the following regular expression: 

oval:[A-Za-z0-9_\ -\ .]+:ste:[1-9][0-9]* 

4.2.13.4 TestIDPattern 

The TestIDPattern  defines the URN format associated with OVAL Test identifiers. All OVAL Test 

identifiers MUST conform to the following regular expression: 

oval:[A-Za-z0-9_\ -\ .]+:tst:[1-9][0-9]* 

4.2.13.5 VariableIDPattern 

The VariableIDPattern  defines the URN format associated with OVAL Variable identifiers. All 

OVAL Variable identifiers MUST conform to the following regular expression: 

oval:[A-Za-z0-9_\ -\ .]+:var:[1-9][0-9]* 

 ItemIDPattern  

The ItemIDPattern  defines the format associated with OVAL Item identifiers. All OVAL Item 

identifiers are unsigned integer values. 

 EmptyStringType  
The EmptyStringType  defines a string value with a maximum length of zero. 

 NonEmptyStringType  

The NonEmptyStringType  defines a string value with a length greater than zero. 

 Any 



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

38 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

The Any datatype represents an abstraction that serves as the basis for other user defined datatypes. 

This Any datatype does not constrain its data in anyway. This type is used to allow for extension with 

the OVAL Language. 

 Signature  

The Signature  type provides a structure for applying a digital signature to OVAL Content. Any binding 

or representation of the OVAL Language MUST specify the format and structure of this type.  This type is 

defined in an external namespace and when referenced in this document will be prefix with the external 

namespace alias as follows, ext:Signature .  See Section 6.1 for more information on how 

signatures are used in the XML binding of OVAL. 

4.3 OVAL Definitions Model  
The OVAL Definitions Model provides a way to describe assertions about a system state. It combines the 

identification of required assessment data and the associated expected state of the data. 

 oval_definitions  

The oval_d efinitions  type defines the base structure in the OVAL Definitions Model for 

representing a collection of OVAL Definitions. This container type adds metadata about the origin of the 

content and allows for a signature. 

 

Property Type Multiplicity  Description 

generator oval:GeneratorType 1 Provides information regarding the origin of the OVAL 
Content. The timestamp  property of the 
generator  MUST represent the time at which the 

oval_definitions  was created. 

definitions DefinitionsType 0..1 Container for OVAL Definitions. 

tests TestsType 0..1 Container for OVAL Tests. 

objects ObjectsType 0..1 Container for OVAL Objects. 

OVAL Definitions::oval_definitions

OVAL Common::GeneratorType

1

1
OVAL Definitions::DefinitionsType

1
0..1

OVAL Definitions::TestsType1

0..1
OVAL Definitions::ObjectsType

OVAL Definitions::StatesType

OVAL Definitions::VariablesType

OVAL::Signature

1 0..1

1

0..1

1

0..1

1

0..1



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

39 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

states StatesType 0..1 Container for OVAL States. 

variables VariablesType 0..1 Container for OVAL Variables. 

signature ext:Signature 0..1 Mechanism to ensure the integrity and authenticity of 
the content. 

 DefinitionsType  

The DefinitionsType  provides a container for one or more OVAL Definitions. 
 

Property Type Multiplicity  Description 

definition DefinitionType 1..* One or more OVAL Definitions. 

 DefinitionType  

The DefinitionType  defines a single OVAL Definition. An OVAL Definition is the key structure in the 

OVAL Definition Model. It is a collection of logical statements that combine to make an overall assertion 

about a system state and metadata about the assertion. 

 

Property Type Multiplicity  Description 

id oval:DefinitionIDPattern 1 The globally unique identifier of the OVAL 
Definition. 

version unsigned integer  1 The version of the OVAL Definition. 

class oval:ClassEnumeration 1 The class of the OVAL Definition. 

deprecated boolean 0..1 Whether or not the OVAL Definition has 
been deprecated. 
 
Default Value: ΨfalseΩ 

metadata MetadataType 1 Container for metadata associated with the 
OVAL Definition. Metadata is informational 
only and does not impact the evaluation of 
the OVAL Definition. 

notes NotesType 0..1 A container for individual notes that 
describe some aspect of the OVAL 
Definition. 

criteria CriteriaType 0..1 A container for the logical criteria that is 

-id[1] : DefinitionIDPattern

-version[1] : unsigned int

-class[1] : ClassEnumeration

-depreacted[0..1] : boolean = 0

OVAL Definitions::DefinitionType

OVAL Definitions::MetadataType

OVAL Definitions::NotesType

OVAL Definitions::CriteriaType

OVAL::Signature1

0..1

1
1

1
0..1

1 0..1



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

40 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

defined by the OVAL Definition. All non-
deprecated OVAL Definitions MUST contain 

at least one criter ia  to express the 
logical assertion being made by the OVAL 
Definition. 

signature ext:Signature 0..1 Mechanism to ensure the integrity and 
authenticity of the content. 

 MetadataType  

The MetadataType  is a container for additional metadata that describes an OVAL Definition. 

 

Property Type Multiplicity  Description 

title  string 1 A short text title for the OVAL Definition. 

affected AffectedType 0..* A container for the list of affected platforms by a 
given OVAL Definition. 

reference ReferenceType 0..* References allow pointers to external information 
about an OVAL Definition. 

description string 1 A detailed text description of the OVAL Definition. 

extension_point Any 0..* An extension point that allows for the inclusion of any 
additional metadata associated with the OVAL 
Definition. 

 

The extension_point  property is not considered a part of the OVAL Language proper, but rather, 

an extension point that allows organizations to expand the OVAL Language to better suit their needs.  

For more information on making use of this extension point see Appendix A ς Extending the OVAL 

Language Data Model. 

 AffectedType  

The AffectedType  is a container type for the list of affected platforms and products. Note that the 

absence of a platform or product implies that the OVAL Definition applies to all platforms or products.  

Property Type Multiplicity  Description 

family oval:FamilyEnumeration 1 The high-level classification of the system type. 

platform string 0..* The name identifying a specific software platform. 
Convention is not to spell out names. 

product string 0..* The name identifying a specific software product. 
Convention is to spell out names. 

-title[1] : string

-description[1] : string

-extension_point[1..*] : Any

OVAL Definitions::MetadataType OVAL Definitions::AffectedType

OVAL Definitions::ReferenceType

1 0..*

1 0..*



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

41 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

 ReferenceType 

The ReferenceType  is a pointer to an external reference that supports or adds more information to 

an OVAL Definition.  

Property Type Multiplicity  Description 

source string 1 The source of the reference. 

ref_id string 1 The identifier for the reference. 

ref_url URI 0..1 The URL for the reference. 

 NotesType 

The NotesType  is a container for one or more notes, providing additional information, such as 

unresolved questions, reasons for specific implementation, or other documentation.  

Property Type Multiplicity  Description 

note string 1..* One or more text notes. 

 CriteriaType  

The CriteriaType  defines the structure of a logical statement that combines other logical 

statements. This construct is used to combine references to OVAL Tests, OVAL Definitions, and other 

CriteriaType s into one logical statement.  

 

Property Type Multiplicity  Description 

operator oval:OperatorEnumeration 0..1 The logical operator that is used to 
combine the individual results of the 
logical statements defined by the 
criteria , criterion , and 
extend_definition  properties. 
 
Default Value: ΨANDΩ 

negate boolean 0..1 Specifies whether or not the 
evaluation result of the 
CriteriaType  should be negated. 
 
Default Value: ΨfalseΩ 

OVAL Definitions::CriterionType

-operator[0..1] : OperatorEnumeration = AND

-negate[0..1] : boolean = false

-comment[0..1] : string

-applicability_check[0..1] : boolean

OVAL Definitions::CriteriaType

1

0..*

OVAL Definitions::ExtendDefinition

1

0..*

1

0..*



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

42 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

comment oval:NonEmptyStringType 0..1 A short description of the criteria . 

criteria CriteriaType 0..* A collection of logical statements that 
will be combined according to the 
operator property. At least one 
criteria , criterion , or 
extend_definition  MUST be 
present. 

criterion CriterionType 0..* A logical statement that references an 
OVAL Test and will be combined 
according to the operator property. At 
least one criteria , criterion , 
or extend_definition  MUST be 
present. 

extend_definition ExtendDefinitionType 0..* A logical statement that references an 
OVAL Definition and will be combined 
according to the operator property. At 

least one criteria , criterion , 
or extend_definition  MUST be 
present. 

applicability_check boolean 0..1 A boolean flag that when ΨtrueΩ 

indicates that the criteria  is being 
used to determine whether the OVAL 
Definition applies to a given system. 
No additional meaning is assumed 
when ΨŦŀƭǎŜΩ. 

 CriterionType  

The CriterionType  is a logical statement that references an OVAL Test. 

 

Property Type Multiplicity  Description 

test_ref oval:TestIDPattern 1 The globally unique identifier of an 
OVAL Test contained in the OVAL 
Definitions. 

negate boolean 0..1 Specifies whether or not the evaluation 
result of the OVAL Test, referenced by 
the test_ref property should be 
negated. 
 
Default Value: ΨfalseΩ 

-test_ref[1] : TestIDPattern

-negate[0..1] : boolean = false

-comment[0..1] : string

-applicability_check[0..1] : boolean = false

OVAL Definitions::CriterionType

OVAL Definitions::TestType



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

43 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

comment oval:NonEmptyStringType 0..1 A short description of the criterion .  

applicability_check boolean 0..1 A boolean flag that when ΨǘǊǳŜΩ 

indicates that the criterion  is being 
used to determine whether the OVAL 
Definition applies to a given system. No 
additional meaning is assumed when 
ΨŦŀƭǎŜΩ. 

 ExtendDefinitionType  

The ExtendDefinitionType  is a logical statement that references another OVAL Definition. 

 

Property Type Multiplicity  Description 

definition_ref oval:DefinitionIDPattern 1 The globally unique identifier of an 
OVAL Definition contained in the OVAL 
Definitions. 

negate boolean 0..1 Specifies whether or not the evaluation 
result of the OVAL Definition, 
referenced by the definition_ref 

property should be negated. 
 
Default Value: ΨfalseΩ 

comment oval:NonEmptyStringType 0..1 A short description of the extended 
OVAL Definition.  

applicability_check boolean 0..1 A boolean flag that when ΨtrueΩ 
indicates that the 
ExtendDefinition  is being used to 
determine whether the OVAL Definition 
applies to a given system. No additional 
meaning is assumed when ΨŦŀƭǎŜΩ. 

 TestsType 

The TestsType  provides a container for one or more OVAL Tests. 

Property Type Multiplicity  Description 

test TestType 1..* One or more OVAL Tests. 

 TestType 

The TestType  is an abstract OVAL Test that defines the common properties associated with all OVAL 

Tests. The TestType  provides an extension point for concrete OVAL Tests, which define platform-

specific capabilities in OVAL Component Models, as described in the section on extending the Language 

-definition_ref[1] : DefinitionIDPattern

-negate[0..1] : boolean = false

-comment[0..1] : string

-applicability_check[0..1] : boolean = false

OVAL Definitions::ExtendDefinition

OVAL Definitions::DefinitionType



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

44 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

(Appendix A ς Extending the OVAL Language Data Model). An OVAL Test defines the relationship 

between an OVAL Object and zero or more OVAL States, specifying exactly how many OVAL Items must 

exist on the system and how many of those OVAL Items must satisfy the set of referenced OVAL States.  

 

Property Type Multiplicity  Description 

id oval:TestIDPattern 1 The globally unique identifier of an OVAL 
Test. 

version unsigned int 1 The version of the unique OVAL Test. 

check_existence oval:ExistenceEnumeration 0..1 Specifies how many OVAL Items must 
exist, on the system, in order for the 
OVAL Test to evaluate to ΨtrueΩ. 
 
Default Value: Ψat_least_one_existsΩ 

check oval:CheckEnumeration 1 Specifies how many of the collected 
OVAL Items must satisfy the 
requirements specified by the OVAL 
State(s) in order for the OVAL Test to 
evaluate to ΨǘǊǳŜΩ. 
 

state_operator oval:OperatorEnumeration 0..1 Specifies how to logically combine the 
OVAL States referenced in the OVAL Test. 
 
Default Value: ΨANDΩ 

comment oval:NonEmptyStringType 1 A short description of the OVAL Test. This 
value SHOULD describe the intent of the 
OVAL Test including the system 
information that is examined and the 
expected state of that information. 

deprecated boolean 0..1 Whether or not the OVAL Test has been 
deprecated. A deprecated OVAL Test is 
one that should no longer be referenced 
by new OVAL Content.  
 
Default Value: ΨfalseΩ 

notes NotesType 0..1 A container for individual notes that 

-id[1] : TestIDPattern

-version[1] : unsigned int

-check_existence[0..1] : ExistenceEnumeration = at_least_one_exists

-check[1] : CheckEnumeration

-state_operator[0..1] : OperatorEnumeration = AND

-comment[1] : string

-deprecated[1] : boolean = false

OVAL Definitions::TestType

1 0..1

OVAL Definitions::NotesType

OVAL::Signature

1 0..1

OVAL Definitions::ObjectType OVAL Definitions::StateType



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

45 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

describe some aspect of the OVAL Test. 

signature ext:Signature 0..1 Mechanism to ensure the integrity and 
authenticity of the content. 

 ObjectRefType 

The ObjectRefType  points to an existing OVAL Object. 

Property Type Multiplicity  Description 

object_ref oval:ObjectIDPattern 1 A reference to an existing OVAL Object. 

 StateRefType 

The StateRefType  points to an existing OVAL State. 

Property Type Multiplicity  Description 

state_ref oval:StateIDPattern 1 A reference to an existing OVAL State. 

 ObjectsType 

The ObjectsType  provides a container for one or more OVAL Objects. 

Property Type Multiplicity  Description 

object ObjectType 1..* A collection of OVAL Objects. 

 ObjectType  

The ObjectType  is an abstract OVAL Object that defines the common properties associated with all 

OVAL Objects. The ObjectType  provides an extension point for normal or "concrete" OVAL Objects, 

which define platform-specific capabilities, in the OVAL Component Models. A concrete OVAL Object 

MUST define sufficient entities to allow a user to identify a unique an item to be collected. 

A concrete OVAL Object may define a set of 0 or more OVAL Behaviors. OVAL Behaviors define an action 
that can further specify the set of OVAL Items that match an OVAL Object. OVAL Behaviors may depend 
on other OVAL Behaviors or may be independent of other OVAL Behaviors. In addition, OVAL Behaviors 
are specific to OVAL Objects and are defined in the OVAL Component Models. 

 

-id[1] : ObjectIDPattern

-version[1] : unsigned int

-comment[1] : string

-deprecated[0..1] : boolean = false

OVAL Definitions::ObjectType

1 0..1

1 0..1

OVAL::Signature

OVAL Definitions::NotesType

OVAL Definitions::VariableTypeOVAL Definitions::StateType



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

46 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

Property Type Multiplicity  Description 

id oval:ObjectIDPattern 1 The unique identifier of an OVAL Object 
contained in the OVAL Definitions 

version unsigned int 1 The version of the globally unique OVAL 
Object referenced by the id  property. 

comment oval:NonEmptyStringType 1 A short description of the OVAL Object. 

deprecated boolean 0..1 Whether or not the OVAL Object has been 
deprecated. 
 
Default Value: ΨfalseΩ 

notes NotesType 0..1 A container for individual notes that 
describe some aspect of the OVAL Object. 

signature ext:Signature 0..1 Mechanism to ensure the integrity and 
authenticity of the content. 

 set 

The set  construct enables the expression of complex OVAL Objects that are the result of logically 

combining and filtering the OVAL Items that are identified by one or more other OVAL Objects. A set  

can consist of either one or two nested sets  or one or two references to other OVAL Objects and a 

collection of OVAL Filters.  

 

Property Type Multiplicity  Description 

set_operator SetOperatorEnumeration 0..1 Specifies the set operation to use when 
combining subsets. 
 
Default Value: ΨUNIONΩ 

set set 0..2 Allows nested sets. 

object_reference oval:ObjectIDPattern 0..2 A reference to an OVAL Object based 
upon its ID. An object_reference  
indicates that any OVAL Items identified 
by the referenced OVAL Object are 
included in the set. The referenced OVAL 
Object MUST be contained within the 
current instance of the OVAL Definitions 
Model and MUST be of the same type as 
the OVAL Object that is referencing it. 

filter  filter 0..n Defines one or more filters to apply to 
the combined data. 

-set_operator[0..1] : SetOperatorEnumeration = UNION

-object_reference[1..2] : ObjectIDPattern

OVAL Definitions::set

1

0..*

OVAL Definitions::ObjectType

OVAL Definitions::filter

1 0..*



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

47 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

 filter  

The filter  construct allows the explicit inclusion or exclusion of OVAL Items from a collection of OVAL 

Items based upon one an OVAL State.  

 

Property Type Multiplicity  Description 

action FilterActionEnumeration 0..1 Defines the type of filter. 
 
Default Value: ΨexcludeΩ 

value oval:StateIDPattern 
 

1 A reference to an OVAL State that 
defines how the data should be 
filtered. The referenced OVAL 
State MUST be contained within 
the current instance of the OVAL 
Definitions Model and MUST be 
of the same type as the OVAL 
Object that is referencing it. 

 StatesType 

The StatesType  provides a container for one or more OVAL States. 

Property Type Multiplicity  Description 

state StateType 1..* A collection of OVAL States. 

 StateType 

The StateType  is an abstract OVAL State that defines the common properties associated with all 

OVAL States. The StateType  provides an extension point for concrete OVAL States, which define 

platform-specific capabilities in the OVAL Component Models, as described in the section on extending 

the Language (Appendix A ς Extending the OVAL Language Data Model). The StateType  is extended 

by concrete OVAL States in order to define platform specific capabilities. Each concrete OVAL State is 

comprised of a set of entities that describe a specific system state.  

  

Property Type Multiplicity  Description 

id oval:StateIDPattern 1 The globally unique identifier of an OVAL 

OVAL Definitions::StateType-action[0..1] : FilterActionEnumeration = exclude

-value[1] : StateIDPattern

OVAL Definitions::filter

-id[1] : StateIDPattern

-version[1] : unsigned int

-operator[0..1] : OperatorEnumeration = AND

-comment[0..1] : string

-deprecated[0..1] : boolean = false

OVAL Definitions::StateType

OVAL Definitions::NotesType

OVAL::Signature

1 0..1

1 0..1

OVAL Definitions::VariableType



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

48 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

State contained in the OVAL Definitions 

version unsigned int 1 The version of the globally unique OVAL 
State referenced by the id  property. 

operator oval:OperatorEnumeration 0..1 The value to be used as the operator for 
the OVAL State, in order to know how to 
combine the set of entities defined within 
the concrete OVAL State. 
 
Default Value: ΨANDΩ 

comment oval:NonEmptyStringType 1 A short description of the OVAL State. 

deprecated boolean 0..1 Whether or not the OVAL State has been 
deprecated. 
 
Default Value: ΨfalseΩ 

notes NotesType 0..1 A container for individual notes that 
describe some aspect of the OVAL State. 

signature ext:Signature 0..1 Mechanism to ensure the integrity and 
authenticity of the content. 

 VariablesType  

The VariablesType  provides a container for one or more OVAL Variables. 

Property Type Multiplicity  Description 

variable VariableType 1..* A collection of OVAL Variables. 

 Variable Type 

The VariableType  is an abstract OVAL Variable that defines the common properties associated with 

all OVAL Variables defined in the OVAL Definition Model. The VariableType  provides an extension 

point for concrete OVAL Variables. Concrete OVAL Variables extend this type to provide specific details.  

Each concrete OVAL Variable has a collection of values. This collection of values may be the empty set. 

The proper handling of an empty collection of values for a given variable is left to the context in which 

the OVAL Variable is used. In some contexts an empty collection of values will be an error, and in other 

contexts an empty collection of values will be needed for proper evaluation. This context sensitive 

behavior is defined in Section 5 Processing. All OVAL Variable values MUST conform to the datatype 

specified by the datatype  property. 

 

-id[1] : VariableIDPattern

-version[1] : unsigned int

-datatype[1] : DatatypeEnumeration

-comment[1] : string

-deprecated[0..1] : boolean = false

OVAL Definitions::VariableType

OVAL::Signature

1 0..1



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

49 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

Property Type Multiplicity  Description 

id oval:VariableIDPattern 1 The unique identifier of an OVAL 
Variable contained in the OVAL 
Definitions 

version unsigned int 1 The version of the globally unique OVAL 
Variable referenced by the id  
property. 

datatype oval:SimpleDatatypeEnumeration 1 The datatype of the value(s) in the 
OVAL Variable. The ΨǊŜŎƻǊŘΩ datatype is 
not supported in OVAL Variables. 

comment oval:NonEmptyStringType 1 The documentation associated with the 
OVAL Variable instance. 

deprecated boolean 0..1 Whether or not the OVAL Variable has 
been deprecated. 
 
Default Value: ΨfalseΩ 

signature ext:Signature 0..1 Mechanism to ensure the integrity and 
authenticity of the content. 

 external_variable  

The external_variable  is an extension of the Variable Type  and provides a way of defining 

variables whose values come from a source outside of the OVAL Definition. 

An external_variable  can have any number of possible_value  and/or 

possible_restriction  elements in any order. 

 

Property Type Multiplicity  Description 

possible_value PossibleValueType 0..* Defines one acceptable value for an 
external variable. 

possible_restriction PossibleRestrictionType 0..* Defines a range of acceptable values for 
an external variable.  

 PossibleValueType  

The PossibleValueType  provides a way to explicitly state an acceptable value for an external 

variable. 

Property Type Multiplicity  Description 

hint string 1 A short description that describes the allowed value. 

OVAL Definitions::external_variable

OVAL Definitions::VariableType

0..*

1

1 0..*

OVAL Definitions::PossibleRestrictionType

OVAL Definitions::PossibleValueType



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

50 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

value string 1 An acceptable value for the external variable. 

 PossibleRestrictionType  

The PossibleRestrictionType  provides a way to explicitly list a range of acceptable values for an 

external variable. The operation attribute may be used to combine multiple restriction  elements 

using a specified operation. See Section 5.3.9.2 Operator Enumeration Evaluation for more information 

on how to combine the individual results. 

 

Property Type Multiplicity  Description 

restriction RestrictionType 1..* The restriction that is being applied. 

operation OperationEnumeration 1 The operation to be applied to the restriction. 
Default Value: Ψ!b5Ω 

hint string 1 A short description that describes the allowed 
value. 

 RestrictionType  

The RestrictionType  defines how to describe a restriction for an external variable. 

Property Type Multiplicity  Description 

operation OperationEnumeration 1 The operation to be applied to the restriction. 

value string 1 An acceptable value for the external variable. 

 constant_variable  

The constant_variable  extends the Variable Type  and provides a way of defining variables 

whose value is immutable. 

 

Property Type Multiplicity  Description 

value ValueType 1..* Defines a value represented by the OVAL 
Variable. 

 ValueType 

The ValueType  element defines a variable value. 

Property Type Multiplicity  Description 

value string 0..* Allows any simple type to be used as a 

-hint[1] : string

OVAL Definitions::PossibleRestrictionType
OVAL Definitions::RestrictionType

1 1..*

OVAL Definitions::constant_variable
OVAL Definitions::ValueType

1 1..*

OVAL Definitions::VariableType



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

51 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

value. If no value is specified the value is 
considered to be the empty string. 

 local_variable  

The local_variable  is an extension of the Variable Type  and provides a way of defining 

variables whose value is determined by another local OVAL Construct. The value of this variable is 

determined at evaluation time.  

A local_variable  can be constructed from a single component or via complex functions to 

manipulate the referenced components. 

 

Property Type Multiplicity  Description 

components ComponentGroup 1..* The collection of ComponentGroup  
constructs to be evaluated in the 
local_variable . 

 ComponentGroup  

The ComponentGroup  defines a set of constructs that can be used within a local_variable  or 

OVAL Function. When defining a local_variable  or OVAL Function, one or more of these 

constructs maybe used to specify the desired collection of values for the OVAL Variable. 

 

Property Type Multiplicity  Description 

object_component ObjectComponentType 0..* A component of an OVAL Variable 
whose value comes from an OVAL 
Object. 

variable_component VariableComponentType  0..* A component of an OVAL Variable 
whose value comes from another OVAL 
Variable. 

literal_component LiteralComponentType 0..* A component of an OVAL Variable 

OVAL Definitions::VariableType

OVAL Definitions::local_variable OVAL Definitions::ComponentGroup

1 1..*

OVAL Definitions::ComponentGroup

OVAL Definitions::LiteralComponentType

OVAL Definitions::ObjectComponentType

OVAL Definitions::VariableComponentType

OVAL Definitions::FunctionGroup

1

0..*

1

0..*

1 0..*

1

0..*



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

52 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

whose value is a literal value. 

functions FunctionGroup 0..* One or more of a set of functions that 
act upon one or more components of 
an OVAL Variable. 

 LiteralComponentType  

The LiteralComponentType  defines the way to provide an immutable value to a 

local_variable . 

Property Type Multiplicity  Description 

datatype oval:SimpleDatatypeEnumeration 0..1 Defines the datatype. 
 
Default Value: ΨstringΩ 

value string 0-1 The value of the literal component. If 
no value is specified the value is 
considered to be the empty string. 

 ObjectComponentType  

The ObjectComponentType  defines the mechanism for retrieving OVAL Item Entity values, specified 

by an OVAL Object, to provide one or more values to a component of a local_variable  or OVAL 

Function. 

 

Property Type Multiplicity  Description 

object_ref oval:ObjectIDPattern 1 Specifies the Identifier for the OVAL 
Object to which the component refers.  

item_field oval:NonEmptyStringType 1 The name of the OVAL Item Entity to use 
for the value(s) of the OVAL Variable. 

record_field oval:NonEmptyStringType 0..1 Allows the retrieval of a specified OVAL 
field to be retrieved from an OVAL Item 
Entity that has a datatype of ΨǊŜŎƻǊŘΩ. 

 VariableComponentType  

The VariableComponentType  defines the way to specify that the value(s) of another OVAL 

Variable should be used as the value(s) for a component of a local_variable  or OVAL Function. 

A variable component is a component that resolves to the value(s) associated with the referenced OVAL 

Variable. 

-object_ref[1] : ObjectIDPattern

-item_field[1] : string

-record_field[0..1] : string

OVAL Definitions::ObjectComponentType

OVAL Definitions::ObjectType



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

53 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

 

Property Type Multiplicity  Description 

var_ref oval:VariableIDPattern 1 Specifies the Identifier for the OVAL Variable to 
which the component refers.  
 
The var_ref  property MUST refer to an existing 
OVAL Variable. Care must be taken to ensure that 
the referenced OVAL Variable does not result in a 
circular reference as it could result in an infinite 
loop when evaluated 

 FunctionGroup  

The FunctionGroup  defines the possible OVAL Functions for use in OVAL Content to manipulate 

collected data. OVAL Functions can be nested within one another to achieve the case where one needs 

to perform multiple functions on a collection of values. 

 

Property Type Multiplicity  Description 

arithmetic ArithmeticFunctionType 0..1 A function for performing basic math on 
numbers. 

begin BeginFunctionType 0..1 A function that ensures that a collected 
string starts with a specified string. 

concat ConcatFunctionType 0..1 A function that combines multiple 
strings. 

count CountFunctionType 0..1 A function that counts returns the count 
of all of the values represented by the 
components. 

end EndFunctionType 0..1 A function that determines whether a 

-var_ref[1] : VariableIDPattern

OVAL Definitions::VariableComponentType
OVAL Definitions::VariableType

OVAL Definitions::FunctionGroup

OVAL Definitions::BeginFunctionType

OVAL Definitions::ConcatFunctionType

OVAL Definitions::EndFunctionType

OVAL Definitions::EscapeRegexFunctionType

OVAL Definitions::RegexCaptureFunctionType

OVAL Definitions::SplitFunctionType

OVAL Definitions::SubstringFunctionType

OVAL Definitions::TimeDifferenceFunctionType

OVAL Definitions::ArithmeticFunctionType

1

0..1

1

0..1

1

0..1

1

0..1

1 0..1

1

0..1

1

0..1

1 0..11

0..1



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

54 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

collected string ends with a specified 
string or not. 

escape_regex EscapeRegexFunctionType 0..1 A function that escapes all of the 
reserved regular expression characters 
in a string. 

split SplitFunctionType 0..1 A function that splits a string into parts, 
using a delimiter. 

substring SubstringFunctionType 0..1 A function that creates a substring from 
a value. 

time_difference TimeDifferenceFunctionType 0..1 A function that calculates the difference 
between two times. 

unique UniqueFunctionType 0..1 A function that takes one or more 
components and removes any duplicate 
value from the set of components. 

regex_capture RegexCaptureFunctionType 0..1 A function that uses a regular 
expression to capture a substring of a 
collected string value.  

 ArithmeticFunctionType  

The ArithmeticFunctionType  defines a function that calculates a given, simple mathematic 

operation between two or more values. This function applies the specified mathematical operation on 

two or more integer or float values. The result of this operation is a single integer or float value, unless 

any of the sub-components resolve to multiple values, in which case the result will be an array of values, 

corresponding to the arithmetic operation applied to the Cartesian product12 of the values.  

In the case of mixed integers and floats, the result will be a float value. 

 

Property Type Multiplicity  Description 

arithmetic_operation ArithmeticEnumeration 1 The operation to perform. 

values ComponentGroup 2..* Any type from the 
ComponentGroup . 

 BeginFunctionType  

The BeginFunctionType  defines a function that ensures that the specified values start with a 

specified character or string. This function operates on a single sub-component of datatype string and 

ensures that the specified value(s) start with the characters specified in the ch aracter  property. 

When a value does not start with the specified characters, the function will prepend add the complete 

                                                           

12 Cartesian Product http://en.wikipedia.org/wiki/Cartesian_product 

-arithmetic_operation[1] : ArithmeticEnumeration

OVAL Definitions::ArithmeticFunctionType
OVAL Definitions::ComponentGroup

1 2..*

http://en.wikipedia.org/wiki/Cartesian_product


 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

55 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

set of characters from the character  property to the string. Otherwise, the string value will remain 

unchanged. 

 

Property Type Multiplicity  Description 

character string 1 The character or string to use for the 
function. 

value ComponentGroup 1 Any type from the ComponentGroup . 

 ConcatFunctionType  

The ConcatFunctionType  defines a function that concatenates the values specified together into a 

single string value. This function combines the values of two or more sub-components into a single 

string value. The function combines the sub-component values in the order that they are specified. That 

is, the first sub-component specified will always be at the beginning of the newly created string value 

and the last sub-component will always be at the end of the newly created string value. 

 

Property Type Multiplicity  Description 

values ComponentGroup 2..* Any type from the ComponentGroup . 

 CountFunctionType  

The Count FunctionType  defines a function that counts the values represented by one or more 

components as an integer. This function determines the total number of values referenced by all of the 

specified sub-components. 

 

Property Type Multiplicity  Description 

values ComponentGroup 1..* Any type from the ComponentGroup . 

 EndFunctionType  

The EndFunctionType  defines a function that ensures that the specified values end with a specified 

character or string. This function operates on a single sub-component of datatype string and ensures 

that the specified value(s) end with the characters specified in the charac ter  property. When a value 

does not end with the specified characters, the function will add the complete set of characters from the 

character  property to the end of the string. Otherwise, the string value will remain unchanged. 

-character[1] : string

OVAL Definitions::BeginFunctionType
OVAL Definitions::ComponentGroup

1 1

OVAL Definitions::ConcatFunctionType
OVAL Definitions::ComponentGroup

1 2..*

oval-def::CountFunctionType

1 1..*

oval-def::ComponentGroup



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

56 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

 

Property Type Multiplicity  Description 

character string 1 The character or string to use for the 
function. 

value ComponentGroup 1 Any type from the ComponentGroup . 

 EscapeRegexFunctionType  

The EscapeRegexFunctionType  defines a function that escapes all of the regular expression 

reserved characters in a given string. This function operates on a single sub-component, escaping 

reserved regular expression characters for each sub-component value. The set of metacharacters, in the 

Perl 5 regular expression syntax, which must be escaped for this purpose is as follows, enclosed by single 

quotes: '^$\ .[](){}*+?|'. Please see Appendix D Regular Expression Support for more information on the 

subset of the Perl 5 regular expression syntax that is supported in the OVAL Language. 

 

Property Type Multiplicity  Description 

value ComponentGroup 1 Any type from the ComponentGroup . 

 SplitFunctionType  

The SplitFunctionType  defines a function that splits a string value into multiple values, based on a 

specified delimiter. This function operates on a single sub-component and results in an array of values, 

where each values is the splitting the subject string using the specified delimiter. 

If the sub-component being split includes a string that either begins with or ends with the delimiter, 

there will be an empty string value included either at the beginning or end, respectively. 

If multiple instances of the delimiter appear consecutively, each instance will result in an additional 

empty string value. 

If the delimiter is not found in the subject string, the entire subject string will be included in the result. 

 

Property Type Multiplicity  Description 

delimiter string 1 The string to use as a delimiter.  

value ComponentGroup 1 Any type from the ComponentGroup . 

-character[1] : string

OVAL Definitions::EndFunctionType
OVAL Definitions::ComponentGroup

1 1

OVAL Definitions::EscapeRegexFunctionType
OVAL Definitions::ComponentGroup

1 1

-delimiter[1] : string

OVAL Definitions::SplitFunctionType
OVAL Definitions::ComponentGroup

1 1



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

57 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

 SubstringFunctionType  

The SubstringFunctionType  defines a function that takes a string value and produces a value 

that contains a portion of the original string. 

 

Property Type Multiplicity  Description 

substring_start int 1 The starting index to use for the substring. This 
property is 1-based, meaning that a value of 1 
represents the first character of the subject 
string. A value less than 1 is also interpreted as 
the first character in the subject string. If the 
substring_start  property exceeds the 
length of the subject string an error MUST be 
reported. 

substring_length int 1 Represents the length of the substring to be 
taken from the source string, including the 
starting character. Any substring_length that 
exceeds the length of the string or is negative 
indicates to include all characters from the 
starting character until the end of the source 
string. 

value ComponentGroup 1 Any type from the ComponentGroup . 

 TimeDifferenceFunctionType  

The TimeDifferenceFunctionType  defines a function that produces a value containing the 

difference in seconds between two date-time values. If a single sub-component is specified, then the 

time difference is between the specified date-time and the current date-time. The current time is the 

time at which the function is evaluated. If two sub-components are specified, then the difference is that 

between the two specified date-times. 

 

Property Type Multiplicity  Description 

format_1 DateTimeFormatEnumeration 0..1 The format for the first date-time value 
specified. Note: If specifying a single value, 
use format_1  to specify the implied 
current date-time.  
 
Default Value: Ψyear_month_dayΩ 

format_2 DateTimeFormatEnumeration 0..1 The format for the second date-time value 

-substring_start[1] : int

-substring_length[1] : int

OVAL Definitions::SubstringFunctionType

OVAL Definitions::ComponentGroup

1 1

-format_1[0..1] : DateTimeFormatEnumeration = year_month_day

-format_2[0..1] : DateTimeFormatEnumeration = year_month_day

OVAL Definitions::TimeDifferenceFunctionType

OVAL Definitions::ComponentGroup

1 1..2



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

58 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

specified. Note: If specifying a single value, 

use format_2  ǘƻ ǎǇŜŎƛŦȅ ǘƘŜ ǾŀƭǳŜΩǎ 
format, as format_1  is used for the 
implied current date-time.  
 
Default Value: Ψyear_month_dayΩ 

value ComponentGroup 1..2 Any type from the ComponentGroup . 

 

If a sub-component value does not conform to the format specified in the 

DateTimeFormatEnumeration  an error MUST be reported. 

The datatype associated with the sub-components MUST be 'string' or 'int' depending on which date 

time format is specified. The result of this function is always an integer. The following table states which 

datatype MUST be used with which format from the DateTimeFormatEnumeration . 

DateTimeFormatEnumeration Value Datatype 

year_month_day string 

month_day_year string 

day_month_year string 

win_filetime int 

seconds_since_epoch int 

 UniqueFunctionType  

The Unique FunctionType  defines a function that removes any duplicate value from the set of 

values represented by one or more components. This function takes one or more sub-components and 

removes any duplicate values across the sub-components. A duplicate value is defined as any value that 

is equal to another value when compared as a string value. See oval:DatatypeEnumeration  in 

Section 5.2.4.5.3 Datatype for more information on comparing two string values. 

 

Property Type Multiplicity  Description 

values ComponentGroup 1..* Any type from the ComponentGroup . 

 RegexCaptureFunctionType  

The RegexCaptureFunctionType  defines a function operating on a single component, which 
extracts a substring from each of its values. 

The pattern property specifies a regular expression, which SHOULD contain a single capturing sub-
pattern (using parentheses).  If the regular expression contains multiple capturing sub-patterns, only the 
first capture is used.  If there are no capturing sub-patterns, the result for each target string MUST be 

oval-def::UniqueFunctionType

1 1..*

oval-def::ComponentGroup



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

59 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

the empty string.  Otherwise, if the regular expression could match the target string in more than one 
place, only the first match (and its first capture) is used.  If no matches are found in a target string, the 
result for that target MUST be the empty string. 

  

Note that a quantified capturing sub-pattern does not produce multiple substrings.  Standard regular 
expression semantics are such that if a capturing sub-pattern is required to match multiple times in 
order for the overall regular expression to match, the capture produced is the last substring to have 
matched the sub-pattern. 

If any of the Perl 5 regular expression syntax metacharacters are to be used literally, then they must be 
escaped. The set of metacharacters which must be escaped for this purpose is as follows, enclosed by 
single quotes: '^$\ .[](){}*+?|'. Please see Appendix D Regular Expression Support for more information 
on the subset of the Perl 5 regular expression syntax that is supported in the OVAL Language. 

For more information about supported regular expressions, see the common subset of the tŜǊƭ рΩǎ 

regular expression syntax that the OVAL Language supports in Appendix D - Regular Expression Support. 

 

Property Type Multiplicity  Description 

pattern string 1 The string to use as a regular expression 
pattern.  

value ComponentGroup 1 Any type from the ComponentGroup . 

 ArithmeticEnumeration  

The ArithmeticEnumeration  defines an enumeration for the possible values for the 

arithmetic  function. 

Enumeration Value Description 

add Indicates addition. 

multiply Indicates multiplication. 

 DateTimeFormatEnumeration  

The DateTimeFormatEnumeration  defines an enumeration for the possible values for the date-

time values. 

Enumeration Value Description 

year_month_day This value indicates a format that follows the following patterns: 
 

¶ yyyymmdd 

¶ yyyymmddThhmmss 

¶ yyyy/mm/dd hh:mm:ss 

-pattern[1] : string

OVAL Definitions::RegexCaptureFunctionType
OVAL Definitions::ComponentGroup

1 1



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

60 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

¶ yyyy/mm/dd 

¶ yyyy-mm-dd hh:mm:ss 

¶ yyyy-mm-dd 

month_day_year This value indicates a format that follows the following patterns: 
 

¶ mm/dd/yyyy hh:mm:ss 

¶ mm/dd/yyyy 

¶ mm-dd-yyyy hh:mm:ss 

¶ mm-dd-yyyy 

¶ NameOfMonth, dd yyyy hh:mm:ss 

¶ NameOfMonth, dd yyyy 

¶ AbreviatedNameOfMonth, dd yyyy hh:mm:ss 

¶ AbreviatedNameOfMonth, dd yyyy 

day_month_year This value indicates a format that follows the following patterns: 
 

¶ dd/mm/yyyy hh:mm:ss 

¶ dd/mm/yyyy 

¶ dd-mm-yyyy hh:mm:ss 

¶ dd-mm-yyyy 

win_filetime This value indicates a date-time that follows the windows file time format[20]. 

seconds_since_epoch This value indicates a date-time that represents the time in seconds since the 
UNIX Epoch. The UNIX epoch is the time 00:00:00 UTC on January 1, 1970. 

 FilterActionEnumeration  

The FilterActionEnumeration  defines an enumeration for the possible values for filtering a set 

of items. 

Enumeration Value Description 

include A value that indicates to include matching items from the set. 

exclude A value that indicates to exclude matching items from the set. 

 SetOperatorEnumeration  

The SetOperatorEnumeration  defines an enumeration for the possible values defining a set. 

Enumeration Value Description 

COMPLEMENT A value that indicates to include only the elements from the first set that are not 
found in the second. 

INTERSECTION A value that indicates to include all of the values common to both sets. 

UNION A value that indicates to include all values found in either of the sets. 

 EntityAttributeGroup  

The EntityAttributeGroup  defines a set of attributes that are common to all OVAL Object and 

OVAL State entities.  

Some OVAL Entities provide additional restrictions on these attributes and their allowed values. 



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

61 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

Property Type Multiplicity  Description 

datatype oval:DatatypeEnumeration 0..1 The datatype for the entity.  
Default Value: ΨstringΩ 

operation oval:OperationEnumeration 0..1 The operation that is to be performed 
on the entity. 
 
Default Value:  ΨequalsΩ 

mask Boolean 0..1 Tells the data collection that this 
entity contains sensitive data. Data 
marked with mask=ΩǘǊǳŜΩ should be 
used only in the evaluation, and not 
be included in the results. 
 
Default Value: ΨfalseΩ 

var_ref oval:VariableIDPattern 0..1 Points to a variable Identifier within 
the OVAL document which should be 
ǳǎŜŘ ǘƻ ŎŀƭŎǳƭŀǘŜ ǘƘŜ ŜƴǘƛǘȅΩǎ ǾŀƭǳŜΦ 

var_check oval:CheckEnumeration 0..1 Directs how to either collect data or 
evaluate state for the entity. 

 EntitySimpleBaseType  

The EntitySimpleBaseType  is an abstract type that defines a base type for all simple entities. 

Entities represent the individual properties for OVAL Objects and OVAL States. 

Property Type Multiplicity  Description 

attributes EntityAttributeGroup 1 The standard attributes available to all 
entities. 

value String 0..1 The value of the entity. 
 
An empty string value MUST be used 
when referencing an OVAL Variable. 

 EntityComplexBaseType  

The EntityComplexBaseType  is an abstract type that defines a base type for all complex entities. 

Entities represent the individual properties for OVAL Objects and OVAL States. 

Property Type Multiplicity  Description 

attributes EntityAttributeGroup 1 The standard attributes available to all 
entities. 

 EntityObjectIPAddressType  

The EntityObjectIPAddressBaseType  extends the EntitySimpleBase Type  and describes 

an IPv4 or IPv6 IP address. 

Property Type Multiplicity  Description 



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

62 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

datatype oval:SimpleDatatypeEnumeration 1 Possible values: 

¶ Ψipv4_addressΩ 

¶ Ψipv6_addressΩ 
 

Also allows an empty string value. 

 EntityObjectIPAddressStringType  

The EntityObjectIPAddressStringBaseType  extends the EntitySimpleBase Type  and 

describes an IPv4 or IPv6 IP address or a string representation of the address. 

Property Type Multiplicity  Description 

datatype oval:SimpleDatatypeEnumeration 1 Possible values: 

¶ Ψipv4_addressΩ 

¶ Ψipv6_addressΩ 

¶ ΨstringΩ 
 

Also allows an empty string value. 

 EntityObjectAnySimpleType  

The EntityObjectAnySimpleType  extends the EntitySimpleBase Type  and describes any 

simple data. 

Property Type Multiplicity  Description 

datatype oval:SimpleDatatypeEnumeration 1 Any simple datatype. 
 
Also allows an empty string value. 

 EntityObjectBinaryType  

The EntityObject Binary Type  extends the EntitySimpleBase Type  and describes any 

simple binary data. 

Property Type Multiplicity  Description 

datatype oval:SimpleDatatypeEnumeration 1 This value is fixed as ΨōƛƴŀǊȅΩ. 
 
Also allows an empty string value. 

 EntityObjectBoolType  

The EntityObjectBoolType  extends the EntitySimpleBase Type  and describes any simple 

Boolean data. 

Property Type Multiplicity  Description 

datatype oval:SimpleDatatypeEnumeration 1 This value is fixed as ΨōƻƻƭŜŀƴΩ. 
 
Also allows an empty string value. 



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

63 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

 EntityObjectFloatType  

The EntityObjectFloatType  extends the EntitySimpleBase Type  and describes any simple 

float data. 

Property Type Multiplicity  Description 

datatype oval:SimpleDatatypeEnumeration 1 This value is fixed as ΨŦƭƻŀǘΩ. 
 
Also allows an empty string value. 

 EntityObjectIntType  

The EntityObjectIntType  extends the EntitySimpleBase Type  and describes any simple 

integer data. 

Property Type Multiplicity  Description 

datatype oval:SimpleDatatypeEnumeration 1 This value is fixed as ΨƛƴǘΩ. 
 
Also allows an empty string value. 

 EntityObjectStringType  

The EntityObjectStringType  extends the EntitySimpleBase Type  and describes any 

simple string data. 

Property Type Multiplicity  Description 

datatype oval:SimpleDatatypeEnumeration 0..1 This value is fixed as ΨǎǘǊƛƴƎΩ. 

 EntityObjectRecordType  

The Entity Object RecordType  extends the Entity Complex BaseType  and allows assertions 

to be made on entities with uniquely named fields. It is intended to be used to assess the results of 

things such as SQL statements and similar data. 

 

Property Type Multiplicity  Description 

datatype oval:ComplexDatatypeEnumeration 1 This value is fixed as ΨǊŜŎƻǊŘΩ. 

operation oval:OperationEnumeration 0..1 This value is fixed as ΨŜǉǳŀƭǎΩ. 

mask boolean 0..1 Tells the data collection that this 
entity contains sensitive data. 
Data marked with mask=ΩǘǊǳŜΩ 
should be used only in the 
evaluation, and not be included 

oval-def::EntityComplexBaseType

oval-def::EntityObjectRecordType
oval-def::EntityObjectFieldType

1 1..*



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

64 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

in the results. 
 

Note that when the mask 
property is set to 'true', all child 
field elements must be masked 
regardless of the child field's 

mask attribute value. 
 
Default Value: ΨfalseΩ 

var_ref oval:VariableIDPattern 0..1 Use of this property is prohibited. 

var_check oval:CheckEnumeration 0..1 Use of this property is prohibited. 

 EntityObjectFieldType  

The Entity Object FieldType  defines an entity type that captures the details of a single field for a 

record. 

Property Type Multiplicity  Description 

attributes EntityAttributeGroup 1 The standard attributes available to all 
entities. 

name string 1 The name of the field.  
 
Names MUST be all lower case 
characters in the range of a-z. 
 
Names MUST be unique within a 
record. 

value string 0..1 The value of the field. 
 
An empty string value MUST be used 
when referencing an OVAL Variable. 

 EntityStateSimpleBaseType  

The EntityStateSimpleBaseType  extends the EntitySimpleBase Type  and defines a simple 

base type for OVAL States. 

Property Type Multiplicity  Description 

entity_check oval:CheckEnumeration 0..1 Defines how to handle multiple item 
entities with the same name. 
 
Default Value: ΨallΩ 

Value string 0..1 The value of the entity. 
 
An empty string value MUST be used 
when referencing an OVAL Variable. 



 The OVAL® Language Specification: Version 5.11 Revision 5  

Date: 12-18-2014 

65 

Copyright © 2012, The MITRE Corporation. All rights reserved. 

 EntityStateComplexBaseType  

The EntityStateComplexBaseType  extends the Entity Complex BaseType  defines a 

complex base type for OVAL States. 

Property Type Multiplicity  Description 

entity_check oval:CheckEnumeration 0..1 Defines how to handle multiple item 
entities with the same name. 
 
Default Value: ΨallΩ 

 EntityStateIPAddressType  

The EntityStateIPAddressBaseType  extends the EntityStateSimpleBase Type  and 

describes an IPv4 or IPv6 IP address. 

Property Type Multiplicity  Description 

datatype oval:SimpleDatatypeEnumeration 1 Possible values: 

¶ Ψipv4_addressΩ 

¶ Ψipv6_addressΩ 
 

Also allows an empty string value. 

 EntityStateIPAddressStringType  

The EntityStateIPAddressStringBaseType  extends the EntityStateSimpleBase Type  

and describes an IPv4 or IPv6 IP address or a string representation of the address. 

Property Type Multiplicity  Description 

datatype oval:SimpleDatatypeEnumeration 1 Possible values: 

¶ Ψipv4_addressΩ 

¶ Ψipv6_addressΩ 

¶ ΨstringΩ 
 

Also allows an empty string value. 

 EntityStateAnySimpleType  

The EntityStateAnySimpleType  extends the EntityStateSimpleBase Type  and describes 

any simple data. 

Property Type Multiplicity  Description 

datatype oval:SimpleDatatypeEnumeration 1 Any simple datatype. 
 
Also allows an empty string value. 

 EntityStateBinaryType  

The EntityStateAny Binary Type  extends the EntityStateSimpleBase Type  and describes 

any simple binary data. 






























































































































































