
THE MITRE CORPORATION

The OVAL® Language
Specification

Version 5.10.1

Jonathan Baker, Matthew Hansbury, Daniel Haynes

1/20/2012

Information security is a function that consumes significant organizational resources, and is growing
increasingly difficult to manage. One of the biggest problems is the lack of standardization between the
sources of security information, and the tools that consume that information, as well as between the
various tools themselves. Often, the exchange of security information is time critical, but is hampered by
the variety of incompatible formats in which it is represented. The Open Vulnerability and Assessment
Language (OVAL®) is an international, information security, community standard to promote open and
publicly available security content, and to standardize the transfer of this information across the entire
spectrum of security tools and services. By standardizing the three main steps of the assessment
process: representing configuration information of systems for testing; analyzing the system for the
presence of the specified machine state; and reporting the results of the assessment, the OVAL
Language provides a common and structured format that facilitates collaboration and information
sharing among the information security community as well as interoperability among tools. This
document defines the use cases, requirements, data model, and processing model for the OVAL
Language.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

2

Copyright © 2012, The MITRE Corporation. All rights reserved.

Acknowledgements
The authors, Jonathan Baker, Matthew Hansbury, and Daniel Haynes of the MITRE Corporation wish to

thank the OVAL Community for its assistance in contributing and reviewing this document. The authors

would like to acknowledge Dave Waltermire of NIST for his contribution to the development of this

document.

Trademark Information
OVAL, the OVAL logo, and CVE are registered trademarks and CCE and CPE are trademarks of The MITRE

Corporation. All other trademarks are the property of their respective owners.

Warnings
MITRE PROVIDES OVAL "AS IS" AND MAKES NO WARRANTY, EXPRESS OR IMPLIED, AS TO THE

ACCURACY, CAPABILITY, EFFICIENCY, MERCHANTABILITY, OR FUNCTIONING OF OVAL. IN NO EVENT WILL

MITRE BE LIABLE FOR ANY GENERAL, CONSEQUENTIAL, INDIRECT, INCIDENTAL, EXEMPLARY, OR SPECIAL

DAMAGES, RELATED TO OVAL OR ANY DERIVATIVE THEREOF, WHETHER SUCH CLAIM IS BASED ON

WARRANTY, CONTRACT, OR TORT, EVEN IF MITRE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES.1

Feedback
The MITRE Corporation welcomes any feedback regarding the OVAL Language Specification. Please send

any comments, questions, or suggestions to the public OVAL Developer’s Forum at oval-developer-

list@lists.mitre.org or directly to the OVAL Moderator at oval@mitre.org.2

1
 For detailed information see https://oval.mitre.org/about/termsofuse.html

2
 For more information about the OVAL Language, please visit https://oval.mitre.org/

https://oval.mitre.org/about/termsofuse.html
https://oval.mitre.org/

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

3

Copyright © 2012, The MITRE Corporation. All rights reserved.

Table of Contents
Acknowledgements ... 2

Trademark Information ... 2

Warnings ... 2

Feedback ... 2

1 Introduction .. 12

1.1 The OVAL Language .. 13

1.2 Document Conventions .. 13

1.3 Document Structure.. 14

2 Use Cases for the OVAL Language .. 15

2.1 Security Advisory Distribution .. 15

Use Case Scenario: Publishing an Advisory ... 15

2.2 Vulnerability Management ... 16

Use Case Scenario: Leveraging a Standardized Security Advisory .. 17

Use Case Scenario: Collaborating on the Development of a Vulnerability Check 17

Use Case Scenario: Sharing Vulnerability Assessment Results ... 17

2.3 Patch Management ... 17

Use Case Scenario: Leveraging a Standardized Patch Check .. 18

Use Case Scenario: Patching a Known Vulnerability ... 18

2.4 Configuration Management .. 18

Use Case Scenario: Configuration Guidance Distribution ... 19

Use Case Scenario: Authoritative Policy Reuse... 19

Use Case Scenario: Compliance Reporting ... 20

2.5 System Inventory .. 20

Use Case Scenario: Operating System Upgrade ... 20

2.6 Malware and Threat Indicator Sharing ... 21

Use Case Scenario: Detecting Compromised Systems .. 21

Use Case Scenario: Sharing Checks for Threat Indicators ... 21

2.7 Network Access Control (NAC) ... 22

Use Case Scenario: Minimum Secure Configuration Baseline Enforcement 22

2.8 Auditing and Centralized Audit Validation .. 22

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

4

Copyright © 2012, The MITRE Corporation. All rights reserved.

Use Case Scenario: Keeping Track of Change ... 22

2.9 Security Information Management Systems (SIMS) ... 23

Use Case Scenario: Data Aggregation ... 23

3 Requirements for the OVAL Language .. 23

3.1 Basic Requirements ... 23

 Expressing Expected Configuration State ... 23 3.1.1

 Representing Observed Configuration State .. 23 3.1.2

 Expressing Assessment Results ... 23 3.1.3

 Content Integrity and Authenticity ... 23 3.1.4

3.2 Detailed Requirements ... 24

 General Content Requirements .. 24 3.2.1

 OVAL Definition Requirements ... 24 3.2.2

 OVAL System Characteristics Requirements ... 24 3.2.3

 OVAL Results Requirements ... 25 3.2.4

4 Data Model for the OVAL Language ... 25

4.1 Data Model Conventions .. 27

 UML Diagrams ... 27 4.1.1

 Property Table Notation ... 27 4.1.2

 Primitive Data Types ... 28 4.1.3

4.2 OVAL Common Model... 28

 GeneratorType .. 28 4.2.1

 MessageType .. 29 4.2.2

 CheckEnumeration .. 29 4.2.3

 ClassEnumeration ... 29 4.2.4

 SimpleDatatypeEnumeration .. 30 4.2.5

int .. 32

ipv4_address ... 32

 ComplexDatatypeEnumeration... 33 4.2.6

 DatatypeEnumeration ... 33 4.2.7

 ExistenceEnumeration .. 33 4.2.8

 FamilyEnumeration ... 34 4.2.9

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

5

Copyright © 2012, The MITRE Corporation. All rights reserved.

 MessageLevelEnumeration ... 34 4.2.10

 OperationEnumeration ... 34 4.2.11

 OperatorEnumeration ... 35 4.2.12

 Definition, Test, Object, State, and Variable Identifiers ... 35 4.2.13

 ItemIDPattern ... 37 4.2.14

 EmptyStringType ... 37 4.2.15

 NonEmptyStringType .. 37 4.2.16

 Any .. 37 4.2.17

 Signature ... 37 4.2.18

4.3 OVAL Definitions Model .. 38

 oval_definitions ... 38 4.3.1

 DefinitionsType ... 38 4.3.2

 DefinitionType ... 39 4.3.3

 MetadataType ... 40 4.3.4

 AffectedType ... 40 4.3.5

 ReferenceType .. 40 4.3.6

 NotesType ... 41 4.3.7

 CriteriaType ... 41 4.3.8

 CriterionType .. 42 4.3.9

 ExtendDefinitionType ... 43 4.3.10

 TestsType .. 43 4.3.11

 TestType .. 43 4.3.12

 ObjectRefType ... 45 4.3.13

 StateRefType ... 45 4.3.14

 ObjectsType .. 45 4.3.15

 ObjectType .. 45 4.3.16

 set .. 46 4.3.17

 filter ... 47 4.3.18

 StatesType ... 47 4.3.19

 StateType .. 47 4.3.20

 VariablesType .. 48 4.3.21

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

6

Copyright © 2012, The MITRE Corporation. All rights reserved.

 VariableType ... 48 4.3.22

 external_variable .. 49 4.3.23

 PossibleValueType .. 49 4.3.24

 PossibleRestrictionType .. 50 4.3.25

 RestrictionType ... 50 4.3.26

 constant_variable.. 50 4.3.27

 ValueType.. 50 4.3.28

 local_variable .. 51 4.3.29

 ComponentGroup ... 51 4.3.30

 LiteralComponentType ... 52 4.3.31

 ObjectComponentType ... 52 4.3.32

 VariableComponentType .. 52 4.3.33

 FunctionGroup .. 53 4.3.34

 ArithmeticFunctionType ... 54 4.3.35

 BeginFunctionType.. 54 4.3.36

 ConcatFunctionType ... 55 4.3.37

 CountFunctionType ... 55 4.3.38

 EndFunctionType .. 55 4.3.39

 EscapeRegexFunctionType .. 56 4.3.40

 SplitFunctionType ... 56 4.3.41

 SubstringFunctionType ... 56 4.3.42

 TimeDifferenceFunctionType .. 57 4.3.43

 UniqueFunctionType ... 58 4.3.44

 RegexCaptureFunctionType .. 58 4.3.45

 ArithmeticEnumeration .. 59 4.3.46

 DateTimeFormatEnumeration .. 59 4.3.47

 FilterActionEnumeration ... 60 4.3.48

 SetOperatorEnumeration ... 60 4.3.49

 EntityAttributeGroup .. 60 4.3.50

 EntitySimpleBaseType ... 61 4.3.51

 EntityComplexBaseType.. 61 4.3.52

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

7

Copyright © 2012, The MITRE Corporation. All rights reserved.

 EntityObjectIPAddressType... 61 4.3.53

 EntityObjectIPAddressStringType ... 61 4.3.54

 EntityObjectAnySimpleType ... 62 4.3.55

 EntityObjectBinaryType .. 62 4.3.56

 EntityObjectBoolType ... 62 4.3.57

 EntityObjectFloatType .. 62 4.3.58

 EntityObjectIntType .. 62 4.3.59

 EntityObjectStringType ... 63 4.3.60

 EntityObjectRecordType ... 63 4.3.61

 EntityObjectFieldType ... 63 4.3.62

 EntityStateSimpleBaseType .. 64 4.3.63

 EntityStateComplexBaseType ... 64 4.3.64

 EntityStateIPAddressType ... 64 4.3.65

 EntityStateIPAddressStringType ... 65 4.3.66

 EntityStateAnySimpleType .. 65 4.3.67

 EntityStateBinaryType ... 65 4.3.68

 EntityStateBoolType .. 65 4.3.69

 EntityStateFloatType ... 65 4.3.70

 EntityStateIntType .. 66 4.3.71

 EntityStateEVRStringType ... 66 4.3.72

 EntityStateVersionType ... 66 4.3.73

 EntityStateFileSetRevisionType ... 66 4.3.74

 EntityIOSVersionType ... 66 4.3.75

 EntityStateStringType ... 67 4.3.76

 EntityStateRecordType ... 67 4.3.77

 EntityStateFieldType ... 68 4.3.78

4.4 OVAL Variables Model .. 68

 oval_variables ... 68 4.4.1

 VariablesType .. 69 4.4.2

 VariableType ... 69 4.4.3

4.5 OVAL System Characteristics Model ... 70

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

8

Copyright © 2012, The MITRE Corporation. All rights reserved.

 SystemInfoType ... 70 4.5.1

 InterfacesType... 71 4.5.2

 InterfaceType .. 71 4.5.3

 CollectedObjectsType ... 71 4.5.4

 ObjectType .. 71 4.5.5

 VariableValueType .. 72 4.5.6

 ReferenceType .. 73 4.5.7

 SystemDataType ... 73 4.5.8

 ItemType ... 73 4.5.9

 EntityAttributeGroup .. 73 4.5.10

 FlagEnumeration ... 74 4.5.11

 StatusEnumeration ... 74 4.5.12

 EntityItemSimpleBaseType ... 75 4.5.13

 EntityItemComplexBaseType .. 75 4.5.14

 EntityItemIPAddressType .. 75 4.5.15

 EntityItemIPAddressStringType .. 76 4.5.16

 EntityItemAnySimpleType ... 76 4.5.17

 EntityItemBinaryType ... 76 4.5.18

 EntityItemBoolType .. 76 4.5.19

 EntityItemFloatType .. 76 4.5.20

 EntityItemIntType ... 77 4.5.21

 EntityItemStringType .. 77 4.5.22

 EntityItemRecordType .. 77 4.5.23

 EntityItemFieldType .. 77 4.5.24

 EntityItemVersionType ... 78 4.5.25

 EntityItemFileSetRevisionType ... 78 4.5.26

 EntityItemIOSVersionType .. 78 4.5.27

 EntityItemEVRStringType .. 78 4.5.28

4.6 OVAL Results Model .. 79

 DirectivesType ... 80 4.6.1

 DefaultDirectivesType ... 80 4.6.2

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

9

Copyright © 2012, The MITRE Corporation. All rights reserved.

 ClassDirectivesType ... 81 4.6.3

 DirectiveType .. 81 4.6.4

 ResultsType ... 82 4.6.5

 SystemType ... 82 4.6.6

 DefinitionType ... 82 4.6.7

 CriteriaType ... 83 4.6.8

 CriterionType .. 84 4.6.9

 ExtendDefinitionType ... 85 4.6.10

 TestType .. 86 4.6.11

 TestedItemType .. 88 4.6.12

 TestedVariableType .. 88 4.6.13

 ContentEnumeration .. 88 4.6.14

 ResultEnumeration ... 89 4.6.15

4.7 OVAL Directives Model ... 89

5 Processing Model for the OVAL Language .. 90

5.1 Producing OVAL Definitions .. 91

 Reuse of Definition, Test, Object, State, and Variable .. 92 5.1.1

 Tracking Change .. 92 5.1.2

 Metadata ... 92 5.1.3

 Content Integrity and Authenticity ... 92 5.1.4

5.2 Producing OVAL System Characteristics ... 92

 System Information ... 93 5.2.1

 Collected Objects .. 93 5.2.2

 Conveying System Data without OVAL Objects .. 94 5.2.3

 Recording System Data and OVAL Items .. 94 5.2.4

 Content Integrity and Authenticity ... 97 5.2.5

5.3 Producing OVAL Results .. 97

 Definition Evaluation ... 97 5.3.1

 Test Evaluation .. 99 5.3.2

 OVAL Object Evaluation .. 103 5.3.3

 OVAL State Evaluation .. 108 5.3.4

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

10

Copyright © 2012, The MITRE Corporation. All rights reserved.

 OVAL Variable Evaluation ... 110 5.3.5

 Common Evaluation Concepts .. 117 5.3.6

int .. 122

ipv4_address ... 122

 Masking Data .. 128 5.3.7

 Entity Casting .. 128 5.3.8

6 XML Representation ... 129

6.1 Signature Support ... 130

6.2 XML Extensions ... 130

6.3 ElementMapType .. 130

6.4 Official OVAL Component Models .. 131

6.5 Use of xsi:nil .. 132

6.6 Validation Requirements .. 132

Appendix A – Extending the OVAL Language Data Model .. 133

OVAL Component Models ... 133

OVAL Definitions Model .. 133

OVAL System Characteristics Model ... 135

Extension Points within the OVAL Definitions Model ... 135

Generator Information.. 135

OVAL Definition Metadata .. 135

Extension Points within the OVAL System Characteristics Model .. 135

Generator Information.. 135

System Information... 136

OVAL Results Model .. 136

Generator Information.. 136

Appendix B - OVAL Language Versioning Policy ... 137

Appendix C - OVAL Language Deprecation Policy ... 137

Appendix D - Regular Expression Support .. 138

Supported Regular Expression Syntax .. 138

Metacharacters ... 138

Greedy Quantifiers .. 138

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

11

Copyright © 2012, The MITRE Corporation. All rights reserved.

Reluctant Quantifiers .. 138

Escape Sequences ... 138

Character Classes .. 139

Zero Width Assertions ... 139

Extensions ... 139

Version 8 Regular Expressions .. 139

Appendix E – Normative References .. 139

Appendix F - Change Log ... 140

Appendix G - Terms and Acronyms ... 141

Terms .. 141

Acronyms .. 142

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

12

Copyright © 2012, The MITRE Corporation. All rights reserved.

1 Introduction
Information security is a function that consumes significant organizational resources, and is growing

increasingly difficult to manage. One of the biggest problems is the lack of standardization between the

sources of security information, and the tools that consume that information, as well as between the

various tools themselves. Often, the exchange of security information is time critical, but is hampered by

the variety of incompatible formats in which it is represented.

This lack of standardization gives rise to many challenges across the information security community.

Once such challenge is the ability to obtain the information necessary to detect the presence of a

vulnerability. Generally, security advisories are released for a specific issue as a text document and often

do not contain all of the information necessary to determine if the vulnerability exists on a specific

system or not. This leaves the IT Security Professional with the task of investigating all available sources

regarding the vulnerability and then trying to piece together the details for detecting the issue.

The next challenge involves the need for vulnerability content teams to reverse-engineer security

advisories such that they can develop tests for their vulnerability and remediation tools. Often times,

the content teams are writing vulnerability content for software that they are not intimately familiar

with meaning the methodology used to detect the presence of a vulnerability is based on the

interpretation of an individual analyst. As a result, different approaches are taken for different tools

when searching for the presence of a vulnerability which leads to conflicting results on the same system.

Once again, the burden falls upon the IT Security Professional to deconflict the results by examining the

individual approaches taken by each of the tools and, if possible, decide which is correct.

Another challenge for the IT Security Professional is the usability of security configuration information.

For organizations publishing security configuration information, there are often multiple repositories of

configuration information, multiple ways in which to manipulate that data, and in some cases, complex

precedence relationships between the data. It is time-consuming and error-prone for the IT Security

Professional to read a configuration document, interpret its meaning with respect to a specific

configuration setting, and then apply that knowledge to an actual system to determine an answer.

Organizations cannot rely on a single tool to provide a complete view of the systems on their network.

Multiple tools are needed and, if they are from different vendors, it is very likely that they will use

different formats for representing data inhibiting interoperability. This requires the IT Security

Professional to correlate the data produced by the tools in order to obtain a complete view of the

systems on the network. It may also be necessary for the data to be manually converted into a format

that is usable by another tool which can also be a tedious and error-prone process.

What the industry requires is a standardized method for representing the configuration state of

computer system, comparing it against some known state, and expressing the results of that

comparison. The representation of this information must easily facilitate its consumption by a software

tool. The advantage of such a standard is that it will:

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

13

Copyright © 2012, The MITRE Corporation. All rights reserved.

 Significantly shorten the time between the official announcement of an issue and the ability of a

tool to check for it.

 Bring consistency and transparency to the results produced by security scanning tools.

 Assist in the exchange of information between security tools.

 Reduce the need for IT Security Professionals to learn the proprietary languages of each of their

tools, and instead allow them to learn a single language that is understood by all the tools.

This document presents the OVAL Language as a standard that fulfills these needs and requirements.

1.1 The OVAL Language
The Open Vulnerability and Assessment Language (OVAL®) is an international, information security,

community standard to promote open and publicly available security content, and to standardize the

transfer of this information across the entire spectrum of security tools and services. The OVAL

Language, developed by a broad spectrum of industry, academia, and government organizations from

around the world, standardizes the three main steps of the assessment process: OVAL System

Characteristics for representing the configuration information of systems for testing; OVAL Definitions

for expressing a specific machine state; and OVAL Results for reporting the results of the assessment. By

doing so, the three core components of the OVAL Language serve as the framework and vocabulary of

the OVAL Language and provide:

 A simple and straightforward approach for determining if a vulnerability, software application,

configuration issue, or patch exists on a given system.

 A standard format that outlines the necessary security-relevant configuration information and

encodes the precise details of a specific issue.

 An open alternative to closed, proprietary, and replicated efforts.

 An effort that is supported by a community of security experts, system administrators, and

software developers from industry, government, and academia.

All of which leads to a common and structured format that facilitates collaboration and information

sharing among the information security community as well as interoperability among security tools.

1.2 Document Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",

"RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC

2119.[16]

The following font and font style conventions are used throughout the remainder of this document:

 The Courier New font is used for writing constructs in the OVAL Language Data Model.

Example: generator

 The ‘italic, with single quotes’ font is used for noting values for OVAL Language properties.

Example: ‘does not exist’

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

14

Copyright © 2012, The MITRE Corporation. All rights reserved.

This document uses the concept of namespaces3 to logically group OVAL constructs throughout both the

Data Model section of the document, as well as other parts of the specification. The format of these

namespaces is prefix:element, where the prefix is the namespace component, and the element is

the name of the qualified construct. The following table lists the namespaces used in this document:

Data Model Namespace Description Example

OVAL Common oval The OVAL Common data model
that captures all of the common
constructs used in OVAL.

oval:GeneratorType

OVAL
Definitions

oval-def The OVAL Definitions data model
that defines the core framework
constructs for creating OVAL
Definitions.

oval-def:TestType

OVAL Results oval-res The OVAL Results data model
that captures all the constructs
used to communicate assessment
results.

oval-res:ResultsType

OVAL Variables oval-var The OVAL Variables data model,
used to define all constructs used
to create OVAL Variables.

oval-var:VariableType

OVAL
Directives

oval-dir The OVAL Directives data model,
which defines the constructs
used to create OVAL Directives.

oval-dir:oval_directives

OVAL System
Characteristics

oval-sc The OVAL System Characteristics
data model, which defines the
constructs used to capture the
data collected on a target
system.

oval-sc:ItemType

External ext This namespace is used to
identify those constructs that are
defined outside the OVAL
Language.

ext:Signature

1.3 Document Structure
This document serves as the specification for the OVAL Language defining the use cases, requirements,

data model, and processing model which is organized into the following sections:

 Section 1 – Introduction

 Section 2 – Use Cases for the OVAL Language

 Section 3 – Requirements for the OVAL Language

 Section 4 – Data Model for the OVAL Language

3
 Namespaces (computer science): http://en.wikipedia.org/wiki/Namespace_(computer_science)

http://en.wikipedia.org/wiki/Namespace_(computer_science)

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

15

Copyright © 2012, The MITRE Corporation. All rights reserved.

 Section 5 – Processing Model for the OVAL Language

 Section 6 – XML Representation

 Appendix A – Extending the OVAL Language Data Model

 Appendix B – OVAL Language Versioning Policy

 Appendix C – OVAL Language Deprecation Policy

 Appendix D – Regular Expression Support

 Appendix E – References

 Appendix F – Change Log

 Appendix G – Terms and Acronyms

2 Use Cases for the OVAL Language
OVAL Use Cases define the intended best practice usage of the standard. The current set of supported

OVAL Use Cases are described below including one or more detailed use case scenarios for each use

case. Additional use cases will be documented as they emerge through the continued operational

application of OVAL.

2.1 Security Advisory Distribution
Security advisories are published by vendors and security researchers as product vulnerabilities are

discovered. Security advisories generally contain the information needed to detect the presence of the

vulnerable product on a system. These advisories are leveraged by alerting services and vulnerability

scanning products to raise awareness of the latest issues that might affect individuals and organizations

using the vulnerable products. One acknowledged need within the security industry is for application

and operating system vendors, and other authoritative organizations, to publish vulnerability

information in a standard, machine-readable format. The benefit of this is two-fold. First, it provides

scanning products with immediate access to actionable content that can be used to assess the security

posture of a system. Second, it moves the authoring of the technical details of a vulnerability from the

reverse engineering efforts of the implementing organization (e.g., scanner-product developer) to a

more authoritative source: the developer of the vulnerable product.

Use Case Scenario: Publishing an Advisory

In this scenario, a software vendor receives a report of an undisclosed vulnerability along with exploit

code from a member of the security community. The vendor examines the report and the exploit code

and confirms that there is a vulnerability in their software. The vendor further investigates the

vulnerability to determine what versions of the software are affected and on what platforms. The

vendor reserves a Common Vulnerabilities and Exposures (CVE®) Identifier4 for the vulnerability and

creates a standardized check for the vulnerability in the form of an OVAL Definition. This new OVAL

4
 Common Vulnerabilities and Exposures (CVE): https://cve.mitre.org

https://cve.mitre.org/

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

16

Copyright © 2012, The MITRE Corporation. All rights reserved.

Definition includes the list of affected platforms and products, a reference to the reserved CVE

Identifier, and a description of the vulnerability. The software vendor adds tests to check for the

vulnerable software on the relevant platforms. Once complete, the OVAL Definition is signed to ensure

integrity and authenticity and tested to ensure that it accurately detects all known vulnerable versions

of the software. Finally, the software vendor publishes a new security advisory for the vulnerability

including the reserved CVE Identifier and the OVAL Definition that will detect the presence of the

vulnerability.

Immediately after publication, organizations begin to download the security advisory’s OVAL Definition,

verify its signature to ensure that it was not modified in transit, and use it in their vulnerability scanning

tool of choice to determine whether or not their systems are vulnerable.

2.2 Vulnerability Management
Vulnerability management is the process of identifying the vulnerabilities in a system and prioritizing

them according to their severity. Currently, organizations that develop vulnerability management

products need to employ a team of content developers. This team investigates vulnerabilities as they

become known, gathering all of the available information for a given vulnerability, and running various

tests against live systems to examine the parameters that indicate the presence of a vulnerability. Once

a vulnerability is understood, this team develops a check that will indicate the presence of the

vulnerability on a system for use in their product. The resulting checks are then distributed to vendor’s

customers so that they can assess their systems and take action based on the vulnerability management

results. All of these tasks must be completed under a very strict time requirement and are repeated

across nearly every organization that develops and offers a vulnerability management product.

For vulnerability management product vendors, having vulnerability information structured in a

standard format allows them to quickly consume data from multiple sources. These vendors can share

vulnerability checks with each other and collaborate on developing the best possible check for a given

issue. If the initial security advisory includes a standardized check for the issue, these vendors can

automatically consume that data. This will allow the vendor to refocus resources away from content

generation to tasks that enhance the functionality of their product while distributing higher quality

checks more quickly to their customers.

From the product customer’s perspective, the primary requirement for having a standard content

format is that it demystifies the vulnerability management process and provides them with the ability to

do an apples-to-apples comparison of the products. When conducting product comparisons, given a

specific set of definitions, each product tested should return the same result. If this is not the case, it is

no longer a result of the products taking different approaches to detecting a vulnerability, and removes

the burden from the customer to determine which product they think returns the most accurate results.

The end result is that the customer can focus more on selecting a product with the features that best

meet their needs, and less on the more difficult problem of which product does the correct job of

detecting vulnerabilities. Lastly, having a well-documented, standard format provides users with the

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

17

Copyright © 2012, The MITRE Corporation. All rights reserved.

information they need to be able to understand the details of an issue, and to determine how a specific

product is conducting its business.

Use Case Scenario: Leveraging a Standardized Security Advisory

An operating system vendor releases a new set of security advisories for its platform as OVAL

Definitions. A system administrator runs the organization’s vulnerability management tool which

retrieves the OVAL Definitions and verifies its signature. The vulnerability management tool then

collects the attributes required to make an assertion about whether or not the system is in a vulnerable

state and includes this information in the OVAL System Characteristics. Next, the vulnerability

management tool evaluates the OVAL System Characteristics against the OVAL Definitions and expresses

the findings in the OVAL Results.

Use Case Scenario: Collaborating on the Development of a Vulnerability Check

A new critical vulnerability is disclosed by an application vendor and the initial security advisory does not

include an authoritative standardized check for the vulnerability. A vulnerability management product

vendor quickly develops and distributes an OVAL Definition with a check for the presence of the

vulnerability on the platforms the vendor supports for its customers. The vendor shares this new check

with a forum of other vulnerability management vendors and industry experts in the form of an OVAL

Definition. The OVAL Definition is extended by another vendor to include detailed checking information

for additional platforms in order to make the vulnerability check complete for all known vulnerable

platforms. The resulting OVAL Definition is again shared with the industry forum. A security expert

participating in the forum notices that under some circumstances the OVAL Definition will detect the

vulnerability when in fact it does not exist (a false positive). The security expert corrects this defect in

the OVAL Definition and once again shares this information with the forum. The forum members have

collaborated in developing a thorough, accurate, standardized check for the vulnerability and leveraged

the resulting OVAL Definition in their products and services.

Use Case Scenario: Sharing Vulnerability Assessment Results

A vulnerability management product, using an OVAL Definition, detects the presence of a vulnerability

on a system and generates the OVAL Results that record this finding. The OVAL Results are provided to

the organization’s security dashboard where it is processed. Due to the severity of the vulnerability and

availability of a patch it is determined that the affected system must be patched. The OVAL Results are

then provided as an input to the organization’s patch management tool where the affected system is

identified and the appropriate patch for the vulnerability is identified by its CVE Identifier and applied to

the system. The system is no longer in a vulnerable state.

2.3 Patch Management
Patch management is the process of identifying the security issues and software updates that affect a

system, applying the patches that resolve these issues, and verifying that the patches were successfully

installed. Ensuring that systems are properly patched is a major concern among organizations as it’s a

leading cause for compromised systems. Patch management tools must have a detailed understanding

of what it means for a given patch to have been properly installed on a system to ensure that systems

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

18

Copyright © 2012, The MITRE Corporation. All rights reserved.

are properly patched. As a result, patch management vendors employ teams of analysts to reverse

engineer patches and fully understand the impact of applying a given patch to a system. These analysts

must develop and maintain checks for each patch their product supports.

For the patch management vendor community, having patch checking information structured in a

standard format allows them to quickly consume data from multiple sources. These vendors can share

patch checks with each other and collaborate on developing the best possible check for a given patch. If

the patch is distributed with a standardized check for the patch these vendors can automatically

consume that data. This will allow the vendor to refocus resources away from content generation to

tasks that enhance the functionality of their product while distributing higher quality patch checks more

quickly to their customers.

Use Case Scenario: Leveraging a Standardized Patch Check

An operating system vendor releases a new set of patches for its platform and includes standardized

patch checks as OVAL Definitions. A system administrator runs the organization’s patch management

tool which retrieves the OVAL Definitions and verifies its signature. The patch management tool then

collects the attributes required to make an assertion about whether or not the system needs to be

patched and includes this information in the OVAL System Characteristics. Next, the patch management

tool evaluates the OVAL System Characteristics against the OVAL Definitions and expresses the findings

in the OVAL Results. The patch management tool examines the OVAL Results and determines that a

patch should be installed. The patch is installed and the system is no longer vulnerable.

Use Case Scenario: Patching a Known Vulnerability

An organization’s patch management tool examines the OVAL Results generated by a vulnerability

management tool. The OVAL Results include summary information about all vulnerabilities that were

checked and full details about the vulnerabilities that were found during a vulnerability assessment. The

patch management tool uses the CVE Identifier associated with each OVAL Definition, included in the

OVAL Results, to enumerate the available patches for the vulnerable software found on the system.

2.4 Configuration Management
The process of configuration management involves examining a machine’s configuration state,

comparing it against a known good or mandated configuration state, and reporting the results. There

are a number of publicly available best practice configuration guides (e.g., the National Security Agency

(NSA) Configuration Guides5, or the National Institute of Standards and Technology (NIST) National

Checklist Program6), and many more developed specifically for individual organizations. In many cases,

these guides exist in paper form only, and it is up to the IT Staff to translate the document into

5
 The National Security Agency (NSA) Configuration Guides

http://www.nsa.gov/ia/guidance/security_configuration_guides/
6
 The National Institute of Standards and Technology (NIST) National Checklist Program

http://checklists.nist.gov/

http://www.nsa.gov/ia/guidance/security_configuration_guides/
http://checklists.nist.gov/

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

19

Copyright © 2012, The MITRE Corporation. All rights reserved.

something that can be applied and enforced on a consistent basis. There are also automated solutions

available that can scan a system for compliance against a given configuration and offer tailoring

capabilities to suit the specific needs of an organization. Unfortunately, these products often rely upon

proprietary data formats, making it difficult to introduce new configuration policies to the product or

move data from one product to another. Finally, as with some of the use cases above, divesting the

language from the product provides the product vendor with a broad repository of content and allows

them to focus on functionality and features.

Use Case Scenario: Configuration Guidance Distribution

An operating system vendor releases a new version of its operating system. Along with the initial release

of the operating system, detailed secure configuration guidance is included. This guidance is intended to

act as a baseline for the operating system’s users to tailor for their own environments and security

requirements. The operating system vendor includes the OVAL Definitions with this secure configuration

guidance. Each OVAL Definition includes a reference to the relevant Common Configuration

Enumeration (CCE™) Identifier7 for correlation with other guidance and policy frameworks, and can be

used to check that a system is compliant with the operating system vendor’s recommendation for that

configuration item. A system administrator runs the organization’s configuration management tool and

provides the OVAL Definitions as input. The configuration management tool then collects the attributes

required to make an assertion about whether or not the system is complaint with the new operating

system configuration guidance and includes this information in the OVAL System Characteristics. Next,

the configuration management tool evaluates the OVAL System Characteristics against the OVAL

Definitions and expresses the findings in the OVAL Results.

Use Case Scenario: Authoritative Policy Reuse

An organization has decided to develop a secure configuration guide for its desktop systems. Rather

than create a new guide from scratch the organization leverages the secure configuration guidance

recommended by the desktop operating system vendor. Since this policy was published in a

standardized, machine readable format, with a collection of OVAL Definitions for checking compliance

with the guide, the organization downloads the policy and tailors it to their environment. By way of

example, the organization has a very strict password policy and needs to require a minimum password

length of 14 characters on all desktop systems. Given that the operating system vendor recommended a

minimum password length of 8 characters as a parameterized value, there is already an OVAL Definition

in the published secure configuration for check minimum password length that can leveraged. The

organization is able to simply tailor the minimum password length value setting it to 14 and reuse the

rest of the checking logic in the OVAL Definition. The organization applies several other customizations

to the policy by editing the published OVAL Definitions. Once completed, the organization inputs the

new policy into its configuration management tool which begins monitoring all desktop systems for

compliance with the policy.

7
 Common Configuration Enumeration (CCE): https://cce.mitre.org

https://cce.mitre.org/

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

20

Copyright © 2012, The MITRE Corporation. All rights reserved.

Use Case Scenario: Compliance Reporting

An organization is required to be compliant with an official configuration baseline and report on the

degree of compliance in order to meet the configuration baseline requirements of an industry body. This

baseline has been expressed and published as a collection of OVAL Definitions and digitally signed by the

authority that developed it. Free from needing to translate the baseline, the organization assesses its

systems for compliance with the baseline using the organization’s own configuration management tool

and the OVAL Definitions. For each system, the configuration management tool collects the attributes

required to make an assertion about the system and its compliance with the baseline. The tool then

includes this information in the OVAL System Characteristics to represent the current state of the

system. The configuration management tool evaluates the OVAL System Characteristics against the

baseline defined by the OVAL Definitions and includes the differences between current system state and

the desired configuration in the OVAL Results. The OVAL Results are then forwarded to the

organization’s compliance reporting tool where the results of the system’s compliance to the baseline

can be made available to the authorities to demonstrate compliance.

2.5 System Inventory
System inventory is the process of gathering a detailed listing of the applications installed on a given

system. Large enterprises often have many versions of many applications running on wide variety

operating systems. Organizations simply do not rely upon one vendor for all of the software that is

running in their enterprises. This raises a considerable challenge when tracking software for licensing,

vulnerability management, compliance, and other purposes. Application and operating system vendors

need a standardized way to describe how to check for the presence of an application, and system

inventory tool vendors need reach out to numerous application and operating system vendors for this

information in order to accurately determine what is installed on a system. Currently, these system

inventory tool vendors must develop their own checks for the presence of an application or operating

system, which is often based on a best guess rather than authoritative knowledge of the system.

Use Case Scenario: Operating System Upgrade

An organization wants to upgrade its remaining systems to the newest version of an operating system.

The organization tasks the system administrator with determining how many licenses need to be

purchased. The system administrator downloads the OVAL Definitions that contain checks for all of the

previous versions of the operating system along with references to Common Platform Enumeration

(CPE™) Identifiers8
 that correspond to the specific platform associated with a check. The system

administrator then runs the system inventory tools across the organization using the downloaded OVAL

Definitions. The system inventory tool collects the attributes required to make an assertion about the

software installed on the system and includes it in the OVAL System Characteristics as a snapshot of the

observed state of the system. Next, the system inventory tool compares the OVAL System

Characteristics to the OVAL Definitions, and records the findings in the OVAL Results. Finally, the system

8
 Common Platform Enumeration (CPE): https://cpe.mitre.org

https://cpe.mitre.org/

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

21

Copyright © 2012, The MITRE Corporation. All rights reserved.

inventory tool forwards the OVAL Results to the organization’s reporting tool. The reporting tool

leverages the CPE Identifiers in the OVAL Results to provide detailed information about the number and

types of earlier versions of the operating system that were found allowing the system administrator to

see how many licenses are required for the upgrade.

2.6 Malware and Threat Indicator Sharing
Incident coordination centers, organizations, and other members of the security community are actively

discussing malware and sharing low-level system details that can be used to detect potentially

compromised systems. These details are commonly shared as prose documents that require translation

into actionable content prior to being used for system assessment. The need for a standard format to

encode malware and threat indicators is widely acknowledged, and its use by incident coordination

centers would be widespread.

Use Case Scenario: Detecting Compromised Systems

An organization discovers that one of their systems has been compromised by some malicious software.

Immediately, the organization tasks their forensics team with investigating the infected systems. During

the investigation, the forensics team notices that the infected system contains certain files that have

been modified and that a previously undisclosed vulnerability was used to gain access to the system.

Realizing that there is no publicly available check for this vulnerability, the forensics team creates an

OVAL Definition with tests to check for the presence of the modified files found during the investigation.

Depending on the forensic team’s in-house tools the resulting OVAL Definition may be automatically

generated from numerous possible sources including static analysis tool outputs or possibly hand

written in the case where a more manual process was used to investigate the incident.

Once complete, the forensics team quickly pushes the new OVAL Definition to their host-based security

system in order to determine how widespread the attack on their infrastructure really is, before their

anti-virus vendor has published updated signatures. The host-based security system collects the

attributes required to determine if a system has been compromised records this information in the

OVAL System Characteristics to capture the system’s current state. Next, the host-based security system

compares the OVAL System Characteristics against the OVAL Definitions and records the differences in

system state in the OVAL Results. Finally, the host-based security system forwards the OVAL Results to

the organization’s reporting tool where the OVAL Results are leveraged to provide detailed information

about the number of systems that have been compromised. Thus, enabling the forensics team to quickly

quarantine and remediate the issue.

Use Case Scenario: Sharing Checks for Threat Indicators

An organization has in-depth knowledge about a system compromise and exactly what artifacts reside

on a system after compromise. The organization exports an OVAL Definition from its in-house malware

database with tests to check for the presence of these artifacts, modified files, and new registry keys,

shares the resulting OVAL Definition with their partners. The partners run the OVAL Definition on their

systems. The partner organizations quickly learn that they too have compromised systems and begin

collaborating with each other in developing a strategy to remediate the affected systems.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

22

Copyright © 2012, The MITRE Corporation. All rights reserved.

2.7 Network Access Control (NAC)
NAC is a technology that can be used to enforce endpoint configuration policies. Policy enforcement

may result in a number of outcomes including, but not limited to, granting full network access, denying

network access, or granting some form of limited access. Most NAC solutions allow for policy checking

and enforcement both when an endpoint requests access to a network and on an ongoing basis to

ensure continued policy conformance. NAC policies are often expressed in proprietary data formats,

making it difficult to introduce new policies or share policies among NAC products. Finally, as with some

of the use cases above, divesting the language from the NAC product provides the product vendor with

a wider repository of content and allows them to focus more on functionality and features.

Use Case Scenario: Minimum Secure Configuration Baseline Enforcement

An organization has defined an endpoint configuration policy that requires a minimum secure

configuration including the installation of antivirus software, activation and proper configuration of a

host-based firewall, and current patch status for all major applications and the operating system. This

policy is expressed as a collection of OVAL Definitions, where each OVAL Definition describes how to

determine if an endpoint complies with a single requirement in the organizational policy. This set of

OVAL Definitions is then distributed to the various NAC solutions that are in place within the enterprise

allowing the organization to define the policy once in a standard format and distribute it to each NAC

solution in place. The various NAC solutions begin enforcing endpoint policy compliance as described in

the OVAL Definitions.

2.8 Auditing and Centralized Audit Validation
Audit validation is responsible for providing reports about the state of a machine at any given time in

the past. There are two basic needs in this area. First and foremost is capturing machine configuration

information at a level of granularity that allows an organization to monitor, track, and reconstruct the

transition of a system’s configuration from one state to another. The second need is that the data be

stored in a standardized, data-centric format, thus ensuring that it is not bound to a specific product,

which may or may not be available at the time it is necessary to review the data.

Use Case Scenario: Keeping Track of Change

An organization deploys a centralized audit validation system. When a new system joins the network, it

is immediately scanned by the organization’s vulnerability management, patch management, and

configuration management tools based on the most up-to-date security advisories, patches, and

policies. The resulting OVAL Results, associated with the scans, serve as the system’s initial state in the

centralized audit validation system. From then on, the system is scanned once a week to determine if

anything has changed. If changes are discovered since the last update, the centralized audit validation

system is updated with the latest OVAL Results. If at any point in time between the scheduled scans, the

system falls into or out of compliance or a new patch has been installed, the centralized audit validation

system is immediately updated with the new OVAL Results. The centralized audit validation system now

contains multiple sets of OVAL Results documenting the various state changes to the system over time.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

23

Copyright © 2012, The MITRE Corporation. All rights reserved.

2.9 Security Information Management Systems (SIMS)
SIMS integrate the output of a variety of security, auditing, and configuration products, as well as their

own agents, to build a comprehensive view of the security posture of an organization’s network. The

fewer data formats the SIM needs to understand the more flexible and powerful the product can be.

Standardizing the data exchange formats between products greatly simplifies the interoperability

requirements and provides the end users with a wider array of applications to choose from.

Use Case Scenario: Data Aggregation

A security information management system vendor utilizes the OVAL Results generated by vulnerability

management tools, patch management tools, configuration management tools, and any other tool that

produces OVAL Results as a primary format for data coming into their system. By doing so, the system

can consume data from an entire range of tools in a straightforward manner without the need to

translate different formats, of like data, into a single format before it can be analyzed.

3 Requirements for the OVAL Language
The following requirements have been developed based upon the goals of OVAL and the needs outlined

in the use cases above. These requirements apply to the OVAL Language itself and establish the OVAL

Language as the standardized framework for expressing the configuration state of computer systems. At

the highest level are the Basic Requirements, which capture the essence of the goals and use cases. Each

of these requirements is further expanded and refined into individual classes of requirements in the

OVAL Definition Requirements, OVAL System Characteristics Requirements, and OVAL Results

Requirements sections below.

3.1 Basic Requirements
The basic requirements listed in this section form the foundation of the OVAL Language and are further

refined and expanded upon in the Detailed Requirements section of this document.

 Expressing Expected Configuration State 3.1.1

 The language MUST be capable of expressing the desired configuration state of a system.

 Representing Observed Configuration State 3.1.2

 The language MUST be capable of expressing the actual configuration state of a system.

 Expressing Assessment Results 3.1.3

 The language MUST be capable of expressing where the actual system configuration differs from

the desired configuration.

 Content Integrity and Authenticity 3.1.4

The language MUST provide the ability to ensure the integrity and authenticity of all content written in

the language.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

24

Copyright © 2012, The MITRE Corporation. All rights reserved.

3.2 Detailed Requirements
The detailed requirements expand upon the general requirements listed in the previous section.

 General Content Requirements 3.2.1

These general requirements apply to all content written in the language.

 The language MUST require that all content specify the language version which it complies with.

 The language MUST require that all content specify when it was created.

 The language MUST allow content to contain information about the product name and version

used to create the content.

 The language MUST allow content to contain additional information that is relevant to the

creation of the document.

 OVAL Definition Requirements 3.2.2

These requirements apply to OVAL Definitions and further refine the basic requirements listed above.

 All major components of the language MUST be reusable.

 Components of the language MUST have globally unique identifiers.

 Component identifiers MUST be structured to allow individual organizations to dynamically

create identifiers without relying on an outside source and be ensured that global uniqueness is

maintained.

 The language MUST allow for the exchange of collections of OVAL Definitions as a single unit of

content.

 A collection of OVAL Definitions MUST contain all of the individual components used by each

definition in the collection.

 The language MUST contain the structure and the means to create unbounded logical

combinations of individual components.

 The language MUST provide the ability to negate logical statements.

 The language MUST allow tailoring of configuration values to meet organization or environment

specific policies.

 The language MUST allow the current configuration of a system to be used as the basis of

further identifying configuration items to examine.

 The language MUST provide a means to add an authoritative reference to an OVAL Definition.

 An OVAL Test SHOULD be capable of testing all of the configuration parameters retrieved from a

corresponding system element.

 An OVAL Test SHOULD mirror, in name and structure, the configuration parameters retrieved

from a system element.

 OVAL System Characteristics Requirements 3.2.3

These requirements apply to OVAL System Characteristics and further refine the basic requirements

listed above.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

25

Copyright © 2012, The MITRE Corporation. All rights reserved.

 OVAL System Characteristics MUST include sufficient asset identification information to uniquely

identify the target system.

 OVAL System Characteristics MUST allow for any additional asset identification information

about the target system to be represented.

 OVAL System Characteristics MUST provide an extensible model for representing items collected

from a system.

 OVAL System Characteristics MUST provide information about whether a specific item exists or

does not exist on a system.

 OVAL System Characteristics MUST allow for a clear linkage between the information that was

found on a system and the information that was requested of the system.

 OVAL System Characteristics MUST allow for the exchange of system configuration information

without any dependency on other OVAL content.

 OVAL System Characteristics MUST report the outcome of attempting to collect a specified set

of system information.

 OVAL System Characteristics MUST provide a means for tools to convey additional information

(error messages, informational messages, etc.) related to attempts to collect system

information.

 OVAL Results Requirements 3.2.4

These requirements apply to OVAL Results and further refine the basic requirements listed above.

 OVAL Results MUST contain information that uniquely identifies the specific system being

reported on.

 OVAL Results MUST be capable of supporting different levels of detail in the reported results.

 OVAL Results MAY include the OVAL Definitions that were evaluated.

 OVAL Results MUST contain the analysis result for each OVAL Definition and each referenced

OVAL component being reported upon.

 OVAL Results MAY include the System Characteristics that were collected.

4 Data Model for the OVAL Language
The core components of the OVAL Language Data Model standardize the three main steps of the

assessment process, specifically:

1. Representing the configuration information of a system.

2. Analyzing the system for the presence of a particular machine state.

3. Reporting the results of the comparison between the specified machine state and the observed

machine state.

The OVAL Definitions Model defines an extensible framework for making an assertion about a system

that is based upon a collection of logical statements. Each logical statement defines a specific machine

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

26

Copyright © 2012, The MITRE Corporation. All rights reserved.

state by identifying the data set on the system to examine and describing the expected state of that

system data. Using the OVAL Definitions Model various assertions can be made about a system

including:

 Is the system in a vulnerable state?

 Is a specific patch installed or missing from the system?

 Is a certain piece of software installed on the system?

 Is the system in compliance with a particular set of configuration guidance?

The OVAL Variables Data Model defines all constructs used to create OVAL Variables and can be used, in

conjunction with the OVAL Definitions Model, to externally specify values that can tailor content based

on the OVAL Definitions Model at run-time. This tailoring can be applied to both the identification of

which system data to examine and the description of the state of that system data.

The OVAL System Characteristics Model provides a framework for representing low-level system

configuration information that can be extended to support platform-specific constructs. The low-level

system configuration information can include operating system properties, installed software, settings

of installed software, operating system security settings, and other machine state. The low-level

configuration information represented by the OVAL System Characteristics Model can be used to

compare actual state against the expected machine state described by a set of OVAL Definitions.

The OVAL Results Model is used to report the results of an evaluation of a set of systems based upon a

set of OVAL Definitions leveraging the OVAL System Characteristics. In this way, the OVAL Results Model

provides detailed information about the set of assertions that were evaluated, the observed states of

the evaluated systems, and the detailed results of the evaluation. This model enables applications to

consume this data, interpret it, and take the necessary actions to report on the evaluation results or

take other actions (for example, install patches, alter system configuration settings, and/or take external

precautions to limit access to the affected systems). The OVAL Results Model can be tailored using the

OVAL Directives Model, which defines the constructs used to create OVAL Directives, to include various

levels of detail which allows for verbose detailed result information or streamlined result information

based on a specific use case.

Lastly, many constructs and enumerations are reused throughout the different components in the OVAL

Language Data Model. To facilitate reuse and avoid duplication, these common constructs and

enumerations are represented in the OVAL Common Model.

The dependencies between the various components of the OVAL Language Data Model are depicted

below.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

27

Copyright © 2012, The MITRE Corporation. All rights reserved.

Figure 4-1 Major Component Dependencies

4.1 Data Model Conventions
The following conventions are used throughout this data model section.

 UML Diagrams 4.1.1

The Data Model makes use of Unified Modeling Language (UML)9 diagrams where appropriate, to

visually depict relationships for the OVAL Language constructs. Diagrams are included for any construct

that inherits from other constructs or has a compositional relationship. The namespaces used in the

diagrams map to those defined at the top of this document.

 Property Table Notation 4.1.2

Throughout the data model, tables are used to describe each data type. Each property table will consist

of a column of property names to identify the property, a type column to reflect the datatype of the

property, a multiplicity column to reflect the allowed number of occurrences of the property, and a

description column that will describe the property. Values in the type column are either primitive

datatypes or other types defied in this document. These values will be cross referenced to the base

definition of their types. Below is an example property table.

Table 4-1 Example Property Table

Property Type Multiplicity Description

<PROPERTY NAME> <DATA TYPE> 0..1 <DESCRIPTION OF THE PROPERTY AND ANY

9 Unified Modeling Language - UML http://www.uml.org/

OVAL

Common

OVAL

Variables

OVAL System

Characteristics

OVAL

Results

OVAL

Directives

OVAL

Definitions

http://www.uml.org/

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

28

Copyright © 2012, The MITRE Corporation. All rights reserved.

USAGE REQUIREMENTS FOR THE PROPERTY>

 Primitive Data Types 4.1.3

The following primitive datatypes are used in the OVAL Language.

 binary – Data of this type conforms to the World Wide Web Consortium (W3C)

Recommendation for hex-encoded binary data [1].

 boolean – Data of this type conforms to the W3C Recommendation for boolean data [2].

 double – Data of this type conforms to the W3C Recommendation for double data [13].

 float – Data of this type conforms to the W3C Recommendation for float data [3].

 int – Data of this type conforms to the W3C Recommendation for integer data [4].

 string – Data of this type conforms to the W3C Recommendation for string data [6].

 unsigned int – Data of this type conforms to the W3C Recommendation for unsigned int data

[15].

 URI – Data of this type conforms to the W3C Recommendation for anyURI data [14].

 DateTime – Data of this type represents a time value that conforms to the yyyy-mm-

ddThh:mm:ss format.

4.2 OVAL Common Model
The OVAL Common Model contains definitions for constructs and enumerations that are used

throughout the other core models in the OVAL Language Data Model both eliminating duplication and

facilitating reuse.

 GeneratorType 4.2.1

The GeneratorType provides a structure for recording information about how and when the OVAL

Content was created, for what version of the OVAL Language it was created, and any additional

information at the discretion of the content author.

Property Type Multiplicity Description

product_name string 0..1 Entity that generated the OVAL Content. This value
SHOULD be expressed as a CPE Name.

product_version string 0..1 Version of the entity that generated the OVAL Content.

schema_version double 1 Version of the OVAL Language that the OVAL Content is
expected to validate against.

timestamp DateTime 1 The date and time of when the OVAL Content, in its
entirety, was originally generated. This value is
independent of the time at which any of the components
of the OVAL Content were created.

extension_point Any 0..* An extension point that allows for the inclusion of any
additional information associated with the generation of
the OVAL Content.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

29

Copyright © 2012, The MITRE Corporation. All rights reserved.

The extension_point property is not considered a part of the OVAL Language proper, but rather,

an extension point that allows organizations to expand the OVAL Language to better suit their needs.

For more information please see Appendix A – Extending the OVAL Language Data Model

 MessageType 4.2.2

The MessageType construct is used to relay messages from tools at run-time. The decision of how to

use these messages is left to the tool developer as an implementation detail based upon the context in

which the message is used.

Property Type Multiplicity Description

level MessageLevelEnumeration 0..1 The level of the message.
Default Value: ‘info’

message string 1 The actual message relayed from the tool.

 CheckEnumeration 4.2.3

The CheckEnumeration enumeration defines the acceptable values that can be used to determine

the final result of an evaluation based on how many of the individual results that make up an evaluation

are true. This enumeration is used in different contexts throughout the OVAL Language. See Section

5.3.6.1 Check Enumeration Evaluation, of the OVAL Language Processing Model, for more information

on how this enumeration is used.

Enumeration Value Description

all The final result is ‘true’ only if all of the individual results under consideration are
‘true’.

at least one The final result is ‘true’ only if one or more of the individual results under
consideration are ‘true’.

none exist DEPRECATED (5.3) In Version 5.3 of the OVAL Language, the checking of existence
and state were separated into two distinct checks CheckEnumeration (state)
and ExistenceEnumeration (existence). Since CheckEnumeration is
now used to specify how many objects should satisfy a given state for a test to
return true, and no longer used for specifying how many objects must exist for a
test to return true, a value of 'none exist' is no longer needed.

The final result is ‘true’ only if zero of the individual results under consideration
are ‘true’.

none satisfy The final result is ‘true’ only if zero of the individual results under consideration
are ‘true’.

only one The final result is ‘true’ only if one of the individual results under consideration is
‘true’.

 ClassEnumeration 4.2.4

The ClassEnumeration defines the different classes of OVAL Definitions where each class specifies

the overall intent of the OVAL Definition.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

30

Copyright © 2012, The MITRE Corporation. All rights reserved.

Enumeration
Value

Description

compliance This class describes OVAL Definitions that check to see if a system’s state is
compliant with a specific policy. An evaluation result of ‘true’, for this class of OVAL
Definitions, indicates that a system is compliant with the stated policy.

inventory This class describes OVAL Definitions that check to see if a piece of software is
installed on a system. An evaluation result of ‘true’, for this class of OVAL
Definitions, indicates that the specified software is installed on the system.

miscellaneous This class describes OVAL Definitions that do not belong to any of the other defined
classes.

patch This class describes OVAL Definitions that check to see if a patch should be installed
on a system. An evaluation result of ’true’, for this class of OVAL Definitions,
indicates that the specified patch should be installed on the system.

vulnerability This class describes OVAL Definitions that check to see if the system is in a
vulnerable state. An evaluation result of ‘true’, for this class of OVAL Definitions,
indicates that the system is in a vulnerable state.

 SimpleDatatypeEnumeration 4.2.5

The SimpleDatatypeEnumeration defines the legal simple datatypes that are used to describe

the values in the OVAL Language. Simple datatypes are those that are based upon a string

representation without additional structure. Each value in the SimpleDatatypeEnumeration has

an allowed set of operations listed in the table below. These operations are based upon the full list of

operations which are defined in the OperationEnumeration.

Enumeration
Value

Description

binary Data of this type conforms to the W3C Recommendation for hex-encoded binary
data [1].

Valid operations are:

 equals

 not equal

boolean Data of this type conforms to the W3C Recommendation for boolean data [2].

Valid operations are:

 equals

 not equal

evr_string Data of this type conforms to the format EPOCH:VERSION-RELEASE and comparisons
involving this type MUST follow the algorithm of librpm's rpmvercmp() function.

Valid operations are:

 equals

 not equal

 greater than

 greater than or equal

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

31

Copyright © 2012, The MITRE Corporation. All rights reserved.

 less than

 less than or equal

fileset_revision Data of this type conforms to the version string related to filesets in HP-UX. An
example would be 'A.03.61.00'.

Valid operations are:

 equals

 not equal

 greater than

 greater than or equal

 less than

 less than or equal

float Data of this type conforms to the W3C Recommendation for float data [3].

Valid operations are:

 equals

 not equal

 greater than

 greater than or equal

 less than

 less than or equal

ios_version Data of this type conforms to Cisco IOS Train strings. These are in essence version
strings for IOS. Please refer to Cisco's IOS Reference Guide for information on how to
compare different Trains as they follow a very specific pattern.[17]

Valid operations are:

 equals

 not equal

 greater than

 greater than or equal

 less than

 less than or equal

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

32

Copyright © 2012, The MITRE Corporation. All rights reserved.

int
Data of this type conforms to the W3C Recommendation for integer data [4].

Valid operations are:

 equals

 not equal

 greater than

 greater than or equal

 less than

 less than or equal

 bitwise and

 bitwise or

ipv4_address
The ipv4_address datatype represents IPv4 addresses and IPv4 address prefixes
(using Classless Inter-Domain Routing [CIDR notation])[18]. Legal values are
represented in dotted-quad notation ('a.b.c.d' where 'a', 'b', 'c', and 'd' are integers
from 0-255), optionally followed by a slash ('/') and either a prefix-length (an integer
from 0-32) or a netmask represented in dotted-quad notation ('a.b.c.d' where 'a', 'b',
'c', and 'd' are integers from 0-255). Examples of legal values are '192.0.2.0',
'192.0.2.0/32', and '192.0.2.0/255.255.255.255'. Additionally, leading zeros are
permitted such that '192.0.2.0' is equal to '192.000.002.000'. [19]

Valid operations are:

 equals

 not equal

 greater than

 greater than or equal

 less than

 less than or equal

 subset of

 superset of

ipv6_address Data of this type conforms to the IETF RFC 4291 Specification for textual
representations of IPv6 addresses and IPv6 address prefixes [5].

Valid operations are:

 equals

 not equal

 greater than

 greater than or equal

 less than

 less than or equal

 subset of

 superset of

string Data of this type conforms to the W3C Recommendation for string data [6].

Valid operations are:

 equals

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

33

Copyright © 2012, The MITRE Corporation. All rights reserved.

 not equal

 case insensitive equals

 case insensitive not equal

 pattern match

version Data of this type represents a value that is a hierarchical list of non-negative integers
separated by a single character delimiter. Any single non-number character may be
used as a delimiter and the delimiter may vary between component of a given
version string.

Valid operations are:

 equals

 not equal

 greater than

 greater than or equal

 less than

 less than or equal

 ComplexDatatypeEnumeration 4.2.6

The ComplexDatatypeEnumeration defines the complex datatypes that are supported the OVAL

Language. These datatypes describe the values with some structure beyond simple string like content. O

One simple example of a complex dataytype is an address. The address might be composed of a street,

city, state, and zip code. These for field together comprise the complete address.

Each value in the ComplexDatatypeEnumeration has an allowed set of operations listed in the

table below. These operations are based upon the full list of operations which are defined in the

OperationEnumeration.

Enumeration Value Description

record Data of this type represents a collection of named fields and values.

Valid operations are:

 equals

 DatatypeEnumeration 4.2.7

The DatatypeEnumeration defines the complete set of all valid datatypes. This set is created as the

union of the SimpleDatatypeEnumeration and the ComplexDatatypeEnumeration. This

type is provided for convenience when working with the OVAL Language.

 ExistenceEnumeration 4.2.8

The ExistenceEnumeration defines the acceptable values that can be used to specify the

expected number of components under consideration must exist.

Enumeration Value Description

all_exist The final existence result is ‘true’ only if all of the components under

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

34

Copyright © 2012, The MITRE Corporation. All rights reserved.

consideration exist.

any_exist The final existence result is ‘true’ only if zero or more of the components under
consideration exist.

at_least_one_exists The final existence result is ‘true’ only if one or more of the components under
consideration exist.

none_exist The final existence result is ‘true’ only if zero of the components under
consideration exist.

only_one_exists The final existence result is ‘true’ only if one of the components under
consideration exist.

 FamilyEnumeration 4.2.9

The FamilyEnumeration defines the high-level family that an operating system belongs to.

Enumeration Value Description

catos This value describes Cisco CatOS operating systems.

ios This value describes Cisco IOS operating systems.

macos This value describes Apple Mac OS operating systems.

pixos This value describes Cisco PIX operating systems.

undefined This value is reserved for operating systems where the high-level family
is not available in the current enumeration.

unix This value describes UNIX operating systems.

vmware_infrastructure This value describes the VMWare Infrastructure.

windows This value describes Microsoft Windows operating systems.

 MessageLevelEnumeration 4.2.10

The MessageLevelEnumeration defines the different levels that can be associated with a

message.

Enumeration Value Description

debug This level is reserved for messages that should only be displayed when the tool
is run in verbose mode.

error This level is reserved for messages where an error was encountered, but the
tool could continue execution.

fatal This level is reserved for messages where an error was encountered and the
tool could not continue execution.

info This level is reserved for messages that contain informational data.

warning This level is reserved for messages that indicate that a problem may have
occurred.

 OperationEnumeration 4.2.11

The OperationEnumeration defines the acceptable operations in the OVAL Language. The precise

meaning of an operation is dependent on the datatype of the values under consideration. See Section

5.3.6.3.1 Datatype and Operation Evaluation for additional information.

Enumeration Value Description

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

35

Copyright © 2012, The MITRE Corporation. All rights reserved.

equals This operation evaluates to ‘true’ if the actual value is equal to the stated
value.

not equal This operation evaluates to ‘true’ if the actual value is not equal to the stated
value.

case insensitive
equals

This operation evaluates to ‘true’ if the actual value is equal to the stated value
when performing a case insensitive comparison.

case insensitive not
equal

This operation evaluates to ‘true’ if the actual value is not equal to the stated
value when performing a case insensitive comparison.

greater than This operation evaluates to ‘true’ if the actual value is greater than the stated
value.

less than This operation evaluates to ‘true’ if the actual value is less than the stated
value.

greater than or equal This operation evaluates to ‘true’ if the actual value is greater than or equal to
the stated value.

less than or equal This operation evaluates to ‘true’ if the actual value is less than or equal to the
stated value.

bitwise and This operation evaluates to ‘true’ if the result of the BITWISE AND operation
between the binary representation of the stated value and the actual value is
equal to the binary representation of the stated value. This operation is used
to determine if a specific bit in a value is set.

bitwise or This operation evaluates to ‘true’ if the result of the BITWISE OR operation
between the binary representation of the stated value and the actual value is
equal to the binary representation of the stated value. This operation is used
to determine if a specific bit in a value is not set.

pattern match This operation evaluates to ‘true’ if the actual value matches the stated regular
expression. The OVAL Language supports a common subset of the Perl 5
Compatible Regular Expression Specification. See Appendix D Regular
Expression Support for more information about regular expression support in
the OVAL Language.

subset of This operation evaluates to ‘true’ if the actual set is a subset of the stated set.

superset of This operation evaluates to ‘true’ if the actual set is a superset of the stated
set.

 OperatorEnumeration 4.2.12

The OperatorEnumeration defines the acceptable logical operators in the OVAL Language. See

Section 5.3.6.2Operator Enumeration Evaluation for additional information.

Enumeration Value Description

AND This operator evaluates to ‘true’ only if every argument is ‘true’.

ONE This operator evaluates to ‘true’ only if one argument is ‘true’.

OR This operator evaluates to ‘true’ only if one or more arguments are ‘true’.

XOR This operator evaluates to ‘true’ only if an odd number of arguments are ‘true’.

 Definition, Test, Object, State, and Variable Identifiers 4.2.13

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

36

Copyright © 2012, The MITRE Corporation. All rights reserved.

The identifiers used for OVAL Definitions, OVAL Tests, OVAL Objects, OVAL States, and OVAL Variables

have a common structure based upon an Unified Resource Name (URN)10 format with a type component

that distinguishes one type of identifier from another. Each identifier has four components that are

separated by a ‘:’ and are represented in the following format:

<PREFIX>:<NAMESPACE>:<TYPE>:<ID>

These components are explained below:

 Prefix – The prefix is always “oval”.

 Namespace – The namespace to which the identifier belongs.

 Type – For of the id. The allowed values are “def” for OVAL Definition, “tst” for OVAL Test, “obj”

for OVAL Object, “ste” for OVAL State, and “var” for OVAL Variable.

 ID Value – The integer value of the identifier.

OVAL Definition, OVAL Test, OVAL Object, OVAL State, and OVAL Variable IDs are globally unique. Each

ID MUST NOT be used more than once within the known body of OVAL Content.

The namespace portion of an ID SHOULD be represented as the reverse Domain Name System (DNS)11

name of the organization that manages the content. Using a reverse DNS name provides a hint to the

OVAL Community about the origin of the content and allows organizations to manage their own

collections of IDs.

OVAL Definition, OVAL Test, OVAL Object, OVAL State, and OVAL Variable IDs SHOULD NOT contain any

semantics. IDs are not intended to convey any meaning.

Once an OVAL Definition, OVAL Test, OVAL Object, OVAL State, or OVAL Variable IDs is assigned it

SHOULD NOT be reused for any other OVAL Definition, OVAL Test, OVAL Object, OVAL State, or OVAL

Variable.

4.2.13.1 DefinitionIDPattern

The DefinitionIDPattern defines the URN format associated with OVAL Definition identifiers. All

OVAL Definition identifiers MUST conform to the following regular expression:

oval:[A-Za-z0-9_\-\.]+:def:[1-9][0-9]*

4.2.13.2 ObjectIDPattern

10
 Unified Resource Name (URN): http://www.ietf.org/rfc/rfc3406.txt

11
 Domain Name System (DNS): http://tools.ietf.org/html/rfc1035

http://www.ietf.org/rfc/rfc3406.txt
http://tools.ietf.org/html/rfc1035

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

37

Copyright © 2012, The MITRE Corporation. All rights reserved.

The ObjectIDPattern defines the URN format associated with OVAL Object identifiers. All OVAL

Object identifiers MUST conform to the following regular expression:

oval:[A-Za-z0-9_\-\.]+:obj:[1-9][0-9]*

4.2.13.3 StateIDPattern

The StateIDPattern defines the URN format associated with OVAL State identifiers. All OVAL State

identifiers MUST conform to the following regular expression:

oval:[A-Za-z0-9_\-\.]+:ste:[1-9][0-9]*

4.2.13.4 TestIDPattern

The TestIDPattern defines the URN format associated with OVAL Test identifiers. All OVAL Test

identifiers MUST conform to the following regular expression:

oval:[A-Za-z0-9_\-\.]+:tst:[1-9][0-9]*

4.2.13.5 VariableIDPattern

The VariableIDPattern defines the URN format associated with OVAL Variable identifiers. All

OVAL Variable identifiers MUST conform to the following regular expression:

oval:[A-Za-z0-9_\-\.]+:var:[1-9][0-9]*

 ItemIDPattern 4.2.14

The ItemIDPattern defines the format associated with OVAL Item identifiers. All OVAL Item

identifiers are unsigned integer values.

 EmptyStringType 4.2.15
The EmptyStringType defines a string value with a maximum length of zero.

 NonEmptyStringType 4.2.16

The NonEmptyStringType defines a string value with a length greater than zero.

 Any 4.2.17

The Any datatype represents an abstraction that serves as the basis for other user defined datatypes.

This Any datatype does not constrain its data in anyway. This type is used to allow for extension with

the OVAL Language.

 Signature 4.2.18

The Signature type provides a structure for applying a digital signature to OVAL Content. Any binding

or representation of the OVAL Language MUST specify the format and structure of this type. This type is

defined in an external namespace and when referenced in this document will be prefix with the external

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

38

Copyright © 2012, The MITRE Corporation. All rights reserved.

namespace alias as follows, ext:Signature. See Section 6.1 for more information on how

signatures are used in the XML binding of OVAL.

4.3 OVAL Definitions Model
The OVAL Definitions Model provides a way to describe assertions about a system state. It combines the

identification of required assessment data and the associated expected state of the data.

 oval_definitions 4.3.1

The oval_definitions type defines the base structure in the OVAL Definitions Model for

representing a collection of OVAL Definitions. This container type adds metadata about the origin of the

content and allows for a signature.

Property Type Multiplicity Description

generator oval:GeneratorType 1 Provides information regarding the origin of the OVAL
Content. The timestamp property of the
generator MUST represent the time at which the
oval_definitions was created.

definitions DefinitionsType 0..1 Container for OVAL Definitions.

tests TestsType 0..1 Container for OVAL Tests.

objects ObjectsType 0..1 Container for OVAL Objects.

states StatesType 0..1 Container for OVAL States.

variables VariablesType 0..1 Container for OVAL Variables.

signature ext:Signature 0..1 Mechanism to ensure the integrity and authenticity of
the content.

 DefinitionsType 4.3.2

The DefinitionsType provides a container for one or more OVAL Definitions.

OVAL Definitions::oval_definitions

OVAL Common::GeneratorType

1

1
OVAL Definitions::DefinitionsType

1
0..1

OVAL Definitions::TestsType1

0..1
OVAL Definitions::ObjectsType

OVAL Definitions::StatesType

OVAL Definitions::VariablesType

OVAL::Signature

1 0..1

1

0..1

1

0..1

1

0..1

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

39

Copyright © 2012, The MITRE Corporation. All rights reserved.

Property Type Multiplicity Description

definition DefinitionType 1..* One or more OVAL Definitions.

 DefinitionType 4.3.3

The DefinitionType defines a single OVAL Definition. An OVAL Definition is the key structure in the

OVAL Definition Model. It is a collection of logical statements that combine to make an overall assertion

about a system state and metadata about the assertion.

Property Type Multiplicity Description

id oval:DefinitionIDPattern 1 The globally unique identifier of the OVAL
Definition.

version unsigned integer 1 The version of the OVAL Definition.

class oval:ClassEnumeration 1 The class of the OVAL Definition.

deprecated boolean 0..1 Whether or not the OVAL Definition has
been deprecated.

Default Value: ‘false’

metadata MetadataType 1 Container for metadata associated with the
OVAL Definition. Metadata is informational
only and does not impact the evaluation of
the OVAL Definition.

notes NotesType 0..1 A container for individual notes that
describe some aspect of the OVAL
Definition.

criteria CriteriaType 0..1 A container for the logical criteria that is
defined by the OVAL Definition. All non-
deprecated OVAL Definitions MUST contain
at least one criteria to express the
logical assertion being made by the OVAL
Definition.

signature ext:Signature 0..1 Mechanism to ensure the integrity and
authenticity of the content.

-id[1] : DefinitionIDPattern

-version[1] : unsigned int

-class[1] : ClassEnumeration

-depreacted[0..1] : boolean = 0

OVAL Definitions::DefinitionType

OVAL Definitions::MetadataType

OVAL Definitions::NotesType

OVAL Definitions::CriteriaType

OVAL::Signature1

0..1

1
1

1
0..1

1 0..1

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

40

Copyright © 2012, The MITRE Corporation. All rights reserved.

 MetadataType 4.3.4

The MetadataType is a container for additional metadata that describes an OVAL Definition.

Property Type Multiplicity Description

title string 1 A short text title for the OVAL Definition.

affected AffectedType 0..* A container for the list of affected platforms by a
given OVAL Definition.

reference ReferenceType 0..* References allow pointers to external information
about an OVAL Definition.

description string 1 A detailed text description of the OVAL Definition.

extension_point Any 0..* An extension point that allows for the inclusion of any
additional metadata associated with the OVAL
Definition.

The extension_point property is not considered a part of the OVAL Language proper, but rather,

an extension point that allows organizations to expand the OVAL Language to better suit their needs.

For more information on making use of this extension point see Appendix A – Extending the OVAL

Language Data Model.

 AffectedType 4.3.5

The AffectedType is a container type for the list of affected platforms and products. Note that the

absence of a platform or product implies that the OVAL Definition applies to all platforms or products.

Property Type Multiplicity Description

family oval:FamilyEnumeration 1 The high-level classification of the system type.

platform string 0..* The name identifying a specific software platform.
Convention is not to spell out names.

product string 0..* The name identifying a specific software product.
Convention is to spell out names.

 ReferenceType 4.3.6

The ReferenceType is a pointer to an external reference that supports or adds more information to

an OVAL Definition.

Property Type Multiplicity Description

source string 1 The source of the reference.

ref_id string 1 The identifier for the reference.

ref_url URI 0..1 The URL for the reference.

-title[1] : string

-description[1] : string

-extension_point[1..*] : Any

OVAL Definitions::MetadataType OVAL Definitions::AffectedType

OVAL Definitions::ReferenceType

1 0..*

1 0..*

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

41

Copyright © 2012, The MITRE Corporation. All rights reserved.

 NotesType 4.3.7

The NotesType is a container for one or more notes, providing additional information, such as

unresolved questions, reasons for specific implementation, or other documentation.

Property Type Multiplicity Description

note string 1..* One or more text notes.

 CriteriaType 4.3.8

The CriteriaType defines the structure of a logical statement that combines other logical

statements. This construct is used to combine references to OVAL Tests, OVAL Definitions, and other

CriteriaTypes into one logical statement.

Property Type Multiplicity Description

operator oval:OperatorEnumeration 0..1 The logical operator that is used to
combine the individual results of the
logical statements defined by the
criteria, criterion, and
extend_definition properties.

Default Value: ‘AND’

negate boolean 0..1 Specifies whether or not the
evaluation result of the
CriteriaType should be negated.

Default Value: ‘false’

comment oval:NonEmptyStringType 0..1 A short description of the criteria.

criteria CriteriaType 0..* A collection of logical statements that
will be combined according to the
operator property. At least one
criteria, criterion, or

extend_definition MUST be
present.

OVAL Definitions::CriterionType

-operator[0..1] : OperatorEnumeration = AND

-negate[0..1] : boolean = false

-comment[0..1] : string

-applicability_check[0..1] : boolean

OVAL Definitions::CriteriaType

1

0..*

OVAL Definitions::ExtendDefinition

1

0..*

1

0..*

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

42

Copyright © 2012, The MITRE Corporation. All rights reserved.

criterion CriterionType 0..* A logical statement that references an
OVAL Test and will be combined
according to the operator property. At

least one criteria, criterion,
or extend_definition MUST be
present.

extend_definition ExtendDefinitionType 0..* A logical statement that references an
OVAL Definition and will be combined
according to the operator property. At
least one criteria, criterion,

or extend_definition MUST be
present.

applicability_check boolean 0..1 A boolean flag that when ‘true’
indicates that the criteria is being
used to determine whether the OVAL
Definition applies to a given system.
No additional meaning is assumed
when ‘false’.

 CriterionType 4.3.9

The CriterionType is a logical statement that references an OVAL Test.

Property Type Multiplicity Description

test_ref oval:TestIDPattern 1 The globally unique identifier of an
OVAL Test contained in the OVAL
Definitions.

negate boolean 0..1 Specifies whether or not the evaluation
result of the OVAL Test, referenced by
the test_ref property should be
negated.

Default Value: ‘false’

comment oval:NonEmptyStringType 0..1 A short description of the criterion.

applicability_check boolean 0..1 A boolean flag that when ‘true’
indicates that the criterion is being
used to determine whether the OVAL
Definition applies to a given system. No
additional meaning is assumed when
‘false’.

-test_ref[1] : TestIDPattern

-negate[0..1] : boolean = false

-comment[0..1] : string

-applicability_check[0..1] : boolean = false

OVAL Definitions::CriterionType

OVAL Definitions::TestType

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

43

Copyright © 2012, The MITRE Corporation. All rights reserved.

 ExtendDefinitionType 4.3.10

The ExtendDefinitionType is a logical statement that references another OVAL Definition.

Property Type Multiplicity Description

definition_ref oval:DefinitionIDPattern 1 The globally unique identifier of an
OVAL Definition contained in the OVAL
Definitions.

negate boolean 0..1 Specifies whether or not the evaluation
result of the OVAL Definition,

referenced by the definition_ref
property should be negated.

Default Value: ‘false’

comment oval:NonEmptyStringType 0..1 A short description of the extended
OVAL Definition.

applicability_check boolean 0..1 A boolean flag that when ‘true’
indicates that the
ExtendDefinition is being used to
determine whether the OVAL Definition
applies to a given system. No additional
meaning is assumed when ‘false’.

 TestsType 4.3.11

The TestsType provides a container for one or more OVAL Tests.

Property Type Multiplicity Description

test TestType 1..* One or more OVAL Tests.

 TestType 4.3.12

The TestType is an abstract OVAL Test that defines the common properties associated with all OVAL

Tests. The TestType provides an extension point for concrete OVAL Tests, which define platform-

specific capabilities in OVAL Component Models, as described in the section on extending the Language

(Appendix A – Extending the OVAL Language Data Model). An OVAL Test defines the relationship

between an OVAL Object and zero or more OVAL States, specifying exactly how many OVAL Items must

exist on the system and how many of those OVAL Items must satisfy the set of referenced OVAL States.

-definition_ref[1] : DefinitionIDPattern

-negate[0..1] : boolean = false

-comment[0..1] : string

-applicability_check[0..1] : boolean = false

OVAL Definitions::ExtendDefinition

OVAL Definitions::DefinitionType

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

44

Copyright © 2012, The MITRE Corporation. All rights reserved.

Property Type Multiplicity Description

id oval:TestIDPattern 1 The globally unique identifier of an OVAL
Test.

version unsigned int 1 The version of the unique OVAL Test.

check_existence oval:ExistenceEnumeration 0..1 Specifies how many OVAL Items must
exist, on the system, in order for the
OVAL Test to evaluate to ‘true’.

Default Value: ‘at_least_one_exists’

check oval:CheckEnumeration 1 Specifies how many of the collected
OVAL Items must satisfy the
requirements specified by the OVAL
State(s) in order for the OVAL Test to
evaluate to ‘true’.

state_operator oval:OperatorEnumeration 0..1 Specifies how to logically combine the
OVAL States referenced in the OVAL Test.

Default Value: ‘AND’

comment oval:NonEmptyStringType 1 A short description of the OVAL Test. This
value SHOULD describe the intent of the
OVAL Test including the system
information that is examined and the
expected state of that information.

deprecated boolean 0..1 Whether or not the OVAL Test has been
deprecated. A deprecated OVAL Test is
one that should no longer be referenced
by new OVAL Content.

Default Value: ‘false’

notes NotesType 0..1 A container for individual notes that
describe some aspect of the OVAL Test.

signature ext:Signature 0..1 Mechanism to ensure the integrity and
authenticity of the content.

-id[1] : TestIDPattern

-version[1] : unsigned int

-check_existence[0..1] : ExistenceEnumeration = at_least_one_exists

-check[1] : CheckEnumeration

-state_operator[0..1] : OperatorEnumeration = AND

-comment[1] : string

-deprecated[1] : boolean = false

OVAL Definitions::TestType

1 0..1

OVAL Definitions::NotesType

OVAL::Signature

1 0..1

OVAL Definitions::ObjectType OVAL Definitions::StateType

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

45

Copyright © 2012, The MITRE Corporation. All rights reserved.

 ObjectRefType 4.3.13

The ObjectRefType points to an existing OVAL Object.

Property Type Multiplicity Description

object_ref oval:ObjectIDPattern 1 A reference to an existing OVAL Object.

 StateRefType 4.3.14

The StateRefType points to an existing OVAL State.

Property Type Multiplicity Description

state_ref oval:StateIDPattern 1 A reference to an existing OVAL State.

 ObjectsType 4.3.15

The ObjectsType provides a container for one or more OVAL Objects.

Property Type Multiplicity Description

object ObjectType 1..* A collection of OVAL Objects.

 ObjectType 4.3.16

The ObjectType is an abstract OVAL Object that defines the common properties associated with all

OVAL Objects. The ObjectType provides an extension point for normal or "concrete" OVAL Objects,

which define platform-specific capabilities, in the OVAL Component Models. A concrete OVAL Object

MUST define sufficient entities to allow a user to identify a unique an item to be collected.

A concrete OVAL Object may define a set of 0 or more OVAL Behaviors. OVAL Behaviors define an action
that can further specify the set of OVAL Items that match an OVAL Object. OVAL Behaviors may depend
on other OVAL Behaviors or may be independent of other OVAL Behaviors. In addition, OVAL Behaviors
are specific to OVAL Objects and are defined in the OVAL Component Models.

Property Type Multiplicity Description

id oval:ObjectIDPattern 1 The unique identifier of an OVAL Object
contained in the OVAL Definitions

-id[1] : ObjectIDPattern

-version[1] : unsigned int

-comment[1] : string

-deprecated[0..1] : boolean = false

OVAL Definitions::ObjectType

1 0..1

1 0..1

OVAL::Signature

OVAL Definitions::NotesType

OVAL Definitions::VariableTypeOVAL Definitions::StateType

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

46

Copyright © 2012, The MITRE Corporation. All rights reserved.

version unsigned int 1 The version of the globally unique OVAL

Object referenced by the id property.

comment oval:NonEmptyStringType 1 A short description of the OVAL Object.

deprecated boolean 0..1 Whether or not the OVAL Object has been
deprecated.

Default Value: ‘false’

notes NotesType 0..1 A container for individual notes that
describe some aspect of the OVAL Object.

signature ext:Signature 0..1 Mechanism to ensure the integrity and
authenticity of the content.

 set 4.3.17

The set construct enables the expression of complex OVAL Objects that are the result of logically

combining and filtering the OVAL Items that are identified by one or more other OVAL Objects. A set

can consist of either one or two nested sets or one or two references to other OVAL Objects and a

collection of OVAL Filters.

Property Type Multiplicity Description

set_operator SetOperatorEnumeration 0..1 Specifies the set operation to use when
combining subsets.

Default Value: ‘UNION’

set set 0..2 Allows nested sets.

object_reference oval:ObjectIDPattern 0..2 A reference to an OVAL Object based

upon its ID. An object_reference
indicates that any OVAL Items identified
by the referenced OVAL Object are
included in the set. The referenced OVAL
Object MUST be contained within the
current instance of the OVAL Definitions
Model and MUST be of the same type as
the OVAL Object that is referencing it.

filter filter 0..n Defines one or more filters to apply to
the combined data.

-set_operator[0..1] : SetOperatorEnumeration = UNION

-object_reference[1..2] : ObjectIDPattern

OVAL Definitions::set

1

0..*

OVAL Definitions::ObjectType

OVAL Definitions::filter

1 0..*

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

47

Copyright © 2012, The MITRE Corporation. All rights reserved.

 filter 4.3.18

The filter construct allows the explicit inclusion or exclusion of OVAL Items from a collection of OVAL

Items based upon one an OVAL State.

Property Type Multiplicity Description

action FilterActionEnumeration 0..1 Defines the type of filter.

Default Value: ‘exclude’

value oval:StateIDPattern

1 A reference to an OVAL State that
defines how the data should be
filtered. The referenced OVAL
State MUST be contained within
the current instance of the OVAL
Definitions Model and MUST be
of the same type as the OVAL
Object that is referencing it.

 StatesType 4.3.19

The StatesType provides a container for one or more OVAL States.

Property Type Multiplicity Description

state StateType 1..* A collection of OVAL States.

 StateType 4.3.20

The StateType is an abstract OVAL State that defines the common properties associated with all

OVAL States. The StateType provides an extension point for concrete OVAL States, which define

platform-specific capabilities in the OVAL Component Models, as described in the section on extending

the Language (Appendix A – Extending the OVAL Language Data Model). The StateType is extended

by concrete OVAL States in order to define platform specific capabilities. Each concrete OVAL State is

comprised of a set of entities that describe a specific system state.

Property Type Multiplicity Description

id oval:StateIDPattern 1 The globally unique identifier of an OVAL

OVAL Definitions::StateType-action[0..1] : FilterActionEnumeration = exclude

-value[1] : StateIDPattern

OVAL Definitions::filter

-id[1] : StateIDPattern

-version[1] : unsigned int

-operator[0..1] : OperatorEnumeration = AND

-comment[0..1] : string

-deprecated[0..1] : boolean = false

OVAL Definitions::StateType

OVAL Definitions::NotesType

OVAL::Signature

1 0..1

1 0..1

OVAL Definitions::VariableType

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

48

Copyright © 2012, The MITRE Corporation. All rights reserved.

State contained in the OVAL Definitions

version unsigned int 1 The version of the globally unique OVAL
State referenced by the id property.

operator oval:OperatorEnumeration 0..1 The value to be used as the operator for
the OVAL State, in order to know how to
combine the set of entities defined within
the concrete OVAL State.

Default Value: ‘AND’

comment oval:NonEmptyStringType 1 A short description of the OVAL State.

deprecated boolean 0..1 Whether or not the OVAL State has been
deprecated.

Default Value: ‘false’

notes NotesType 0..1 A container for individual notes that
describe some aspect of the OVAL State.

signature ext:Signature 0..1 Mechanism to ensure the integrity and
authenticity of the content.

 VariablesType 4.3.21

The VariablesType provides a container for one or more OVAL Variables.

Property Type Multiplicity Description

variable VariableType 1..* A collection of OVAL Variables.

 VariableType 4.3.22

The VariableType is an abstract OVAL Variable that defines the common properties associated with

all OVAL Variables defined in the OVAL Definition Model. The VariableType provides an extension

point for concrete OVAL Variables. Concrete OVAL Variables extend this type to provide specific details.

Each concrete OVAL Variable has a collection of values. This collection of values may be the empty set.

The proper handling of an empty collection of values for a given variable is left to the context in which

the OVAL Variable is used. In some contexts an empty collection of values will be an error, and in other

contexts an empty collection of values will be needed for proper evaluation. This context sensitive

behavior is defined in Section 5 Processing. All OVAL Variable values MUST conform to the datatype

specified by the datatype property.

-id[1] : VariableIDPattern

-version[1] : unsigned int

-datatype[1] : DatatypeEnumeration

-comment[1] : string

-deprecated[0..1] : boolean = false

OVAL Definitions::VariableType

OVAL::Signature

1 0..1

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

49

Copyright © 2012, The MITRE Corporation. All rights reserved.

Property Type Multiplicity Description

id oval:VariableIDPattern 1 The unique identifier of an OVAL
Variable contained in the OVAL
Definitions

version unsigned int 1 The version of the globally unique OVAL
Variable referenced by the id
property.

datatype oval:SimpleDatatypeEnumeration 1 The datatype of the value(s) in the
OVAL Variable. The ‘record’ datatype is
not supported in OVAL Variables.

comment oval:NonEmptyStringType 1 The documentation associated with the
OVAL Variable instance.

deprecated boolean 0..1 Whether or not the OVAL Variable has
been deprecated.

Default Value: ‘false’

signature ext:Signature 0..1 Mechanism to ensure the integrity and
authenticity of the content.

 external_variable 4.3.23

The external_variable is an extension of the VariableType and provides a way of defining

variables whose values come from a source outside of the OVAL Definition.

An external_variable can have any number of possible_value and/or

possible_restriction elements in any order.

Property Type Multiplicity Description

possible_value PossibleValueType 0..* Defines one acceptable value for an
external variable.

possible_restriction PossibleRestrictionType 0..* Defines a range of acceptable values for
an external variable.

 PossibleValueType 4.3.24

The PossibleValueType provides a way to explicitly state an acceptable value for an external

variable.

Property Type Multiplicity Description

hint string 1 A short description that describes the allowed value.

OVAL Definitions::external_variable

OVAL Definitions::VariableType

0..*

1

1 0..*

OVAL Definitions::PossibleRestrictionType

OVAL Definitions::PossibleValueType

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

50

Copyright © 2012, The MITRE Corporation. All rights reserved.

value string 1 An acceptable value for the external variable.

 PossibleRestrictionType 4.3.25

The PossibleRestrictionType provides a way to explicitly list a range of acceptable values for an

external variable.

Property Type Multiplicity Description

restriction RestrictionType 1..* The restriction that is being applied.

hint string 1 A short description that describes the allowed value.

 RestrictionType 4.3.26

The RestrictionType defines how to describe a restriction for an external variable.

Property Type Multiplicity Description

operation OperationEnumeration 1 The operation to be applied to the restriction.

value string 1 An acceptable value for the external variable.

 constant_variable 4.3.27

The constant_variable extends the VariableType and provides a way of defining variables

whose value is immutable.

Property Type Multiplicity Description

value ValueType 1..* Defines a value represented by the OVAL
Variable.

 ValueType 4.3.28

The ValueType element defines a variable value.

Property Type Multiplicity Description

value string 0..* Allows any simple type to be used as a
value. If no value is specified the value is
considered to be the empty string.

-hint[1] : string

OVAL Definitions::PossibleRestrictionType
OVAL Definitions::RestrictionType

1 1..*

OVAL Definitions::constant_variable
OVAL Definitions::ValueType

1 1..*

OVAL Definitions::VariableType

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

51

Copyright © 2012, The MITRE Corporation. All rights reserved.

 local_variable 4.3.29

The local_variable is an extension of the VariableType and provides a way of defining

variables whose value is determined by another local OVAL Construct. The value of this variable is

determined at evaluation time.

A local_variable can be constructed from a single component or via complex functions to

manipulate the referenced components.

Property Type Multiplicity Description

components ComponentGroup 1..* The collection of ComponentGroup
constructs to be evaluated in the

local_variable.

 ComponentGroup 4.3.30

The ComponentGroup defines a set of constructs that can be used within a local_variable or

OVAL Function. When defining a local_variable or OVAL Function, one or more of these

constructs maybe used to specify the desired collection of values for the OVAL Variable.

Property Type Multiplicity Description

object_component ObjectComponentType 0..* A component of an OVAL Variable
whose value comes from an OVAL
Object.

variable_component VariableComponentType 0..* A component of an OVAL Variable
whose value comes from another OVAL
Variable.

literal_component LiteralComponentType 0..* A component of an OVAL Variable
whose value is a literal value.

functions FunctionGroup 0..* One or more of a set of functions that
act upon one or more components of

OVAL Definitions::VariableType

OVAL Definitions::local_variable OVAL Definitions::ComponentGroup

1 1..*

OVAL Definitions::ComponentGroup

OVAL Definitions::LiteralComponentType

OVAL Definitions::ObjectComponentType

OVAL Definitions::VariableComponentType

OVAL Definitions::FunctionGroup

1

0..*

1

0..*

1 0..*

1

0..*

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

52

Copyright © 2012, The MITRE Corporation. All rights reserved.

an OVAL Variable.

 LiteralComponentType 4.3.31

The LiteralComponentType defines the way to provide an immutable value to a

local_variable.

Property Type Multiplicity Description

datatype oval:SimpleDatatypeEnumeration 0..1 Defines the datatype.

Default Value: ‘string’

value string 0-1 The value of the literal component. If
no value is specified the value is
considered to be the empty string.

 ObjectComponentType 4.3.32

The ObjectComponentType defines the mechanism for retrieving OVAL Item Entity values, specified

by an OVAL Object, to provide one or more values to a component of a local_variable or OVAL

Function.

Property Type Multiplicity Description

object_ref oval:ObjectIDPattern 1 Specifies the Identifier for the OVAL
Object to which the component refers.

item_field oval:NonEmptyStringType 1 The name of the OVAL Item Entity to use
for the value(s) of the OVAL Variable.

record_field oval:NonEmptyStringType 0..1 Allows the retrieval of a specified OVAL
field to be retrieved from an OVAL Item
Entity that has a datatype of ‘record’.

 VariableComponentType 4.3.33

The VariableComponentType defines the way to specify that the value(s) of another OVAL

Variable should be used as the value(s) for a component of a local_variable or OVAL Function.

A variable component is a component that resolves to the value(s) associated with the referenced OVAL

Variable.

-object_ref[1] : ObjectIDPattern

-item_field[1] : string

-record_field[0..1] : string

OVAL Definitions::ObjectComponentType

OVAL Definitions::ObjectType

-var_ref[1] : VariableIDPattern

OVAL Definitions::VariableComponentType
OVAL Definitions::VariableType

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

53

Copyright © 2012, The MITRE Corporation. All rights reserved.

Property Type Multiplicity Description

var_ref oval:VariableIDPattern 1 Specifies the Identifier for the OVAL Variable to
which the component refers.

The var_ref property MUST refer to an existing
OVAL Variable. Care must be taken to ensure that
the referenced OVAL Variable does not result in a
circular reference as it could result in an infinite
loop when evaluated

 FunctionGroup 4.3.34

The FunctionGroup defines the possible OVAL Functions for use in OVAL Content to manipulate

collected data. OVAL Functions can be nested within one another to achieve the case where one needs

to perform multiple functions on a set of values.

Property Type Multiplicity Description

arithmetic ArithmeticFunctionType 0..1 A function for performing basic math on
numbers.

begin BeginFunctionType 0..1 A function that ensures that a collected
string starts with a specified string.

concat ConcatFunctionType 0..1 A function that combines multiple
strings.

count CountFunctionType 0..1 A function that counts returns the count
of all of the values represented by the
components.

end EndFunctionType 0..1 A function that determines whether a
collected string ends with a specified
string or not.

escape_regex EscapeRegexFunctionType 0..1 A function that escapes all of the

OVAL Definitions::FunctionGroup

OVAL Definitions::BeginFunctionType

OVAL Definitions::ConcatFunctionType

OVAL Definitions::EndFunctionType

OVAL Definitions::EscapeRegexFunctionType

OVAL Definitions::RegexCaptureFunctionType

OVAL Definitions::SplitFunctionType

OVAL Definitions::SubstringFunctionType

OVAL Definitions::TimeDifferenceFunctionType

OVAL Definitions::ArithmeticFunctionType

1

0..1

1

0..1

1

0..1

1

0..1

1 0..1

1

0..1

1

0..1

1 0..11

0..1

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

54

Copyright © 2012, The MITRE Corporation. All rights reserved.

reserved regular expression characters
in a string.

split SplitFunctionType 0..1 A function that splits a string into parts,
using a delimiter.

substring SubstringFunctionType 0..1 A function that creates a substring from
a value.

time_difference TimeDifferenceFunctionType 0..1 A function that calculates the difference
between two times.

unique UniqueFunctionType 0..1 A function that takes one or more
components and removes any duplicate
value from the set of components.

regex_capture RegexCaptureFunctionType 0..1 A function that uses a regular
expression to capture a substring of a
collected string value.

 ArithmeticFunctionType 4.3.35

The ArithmeticFunctionType defines a function that calculates a given, simple mathematic

operation between two or more values. This function applies the specified mathematical operation on

two or more integer or float values. The result of this operation is a single integer or float value, unless

any of the sub-components resolve to multiple values, in which case the result will be an array of values,

corresponding to the arithmetic operation applied to the Cartesian product12 of the values.

In the case of mixed integers and floats, the result will be a float value.

Property Type Multiplicity Description

arithmetic_operation ArithmeticEnumeration 1 The operation to perform.

values ComponentGroup 2..* Any type from the

ComponentGroup.

 BeginFunctionType 4.3.36

The BeginFunctionType defines a function that ensures that the specified values start with a

specified character or string. This function operates on a single sub-component of datatype string and

ensures that the specified value(s) start with the characters specified in the character property.

When a value does not start with the specified characters, the function will prepend add the complete

set of characters from the character property to the string. Otherwise, the string value will remain

unchanged.

12
 Cartesian Product http://en.wikipedia.org/wiki/Cartesian_product

-arithmetic_operation[1] : ArithmeticEnumeration

OVAL Definitions::ArithmeticFunctionType
OVAL Definitions::ComponentGroup

1 2..*

http://en.wikipedia.org/wiki/Cartesian_product

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

55

Copyright © 2012, The MITRE Corporation. All rights reserved.

Property Type Multiplicity Description

character string 1 The character or string to use for the
function.

value ComponentGroup 1 Any type from the ComponentGroup.

 ConcatFunctionType 4.3.37

The ConcatFunctionType defines a function that concatenates the values specified together into a

single string value. This function combines the values of two or more sub-components into a single

string value. The function combines the sub-component values in the order that they are specified. That

is, the first sub-component specified will always be at the beginning of the newly created string value

and the last sub-component will always be at the end of the newly created string value.

Property Type Multiplicity Description

values ComponentGroup 2..* Any type from the ComponentGroup.

 CountFunctionType 4.3.38

The CountFunctionType defines a function that counts the values represented by one or more

components as an integer. This function determines the total number of values referenced by all of the

specified sub-components.

Property Type Multiplicity Description

values ComponentGroup 1..* Any type from the ComponentGroup.

 EndFunctionType 4.3.39

The EndFunctionType defines a function that ensures that the specified values end with a specified

character or string. This function operates on a single sub-component of datatype string and ensures

that the specified value(s) end with the characters specified in the character property. When a value

does not end with the specified characters, the function will add the complete set of characters from the

character property to the end of the string. Otherwise, the string value will remain unchanged.

-character[1] : string

OVAL Definitions::BeginFunctionType
OVAL Definitions::ComponentGroup

1 1

OVAL Definitions::ConcatFunctionType
OVAL Definitions::ComponentGroup

1 2..*

oval-def::CountFunctionType

1 1..*

oval-def::ComponentGroup

-character[1] : string

OVAL Definitions::EndFunctionType
OVAL Definitions::ComponentGroup

1 1

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

56

Copyright © 2012, The MITRE Corporation. All rights reserved.

Property Type Multiplicity Description

character string 1 The character or string to use for the
function.

value ComponentGroup 1 Any type from the ComponentGroup.

 EscapeRegexFunctionType 4.3.40

The EscapeRegexFunctionType defines a function that escapes all of the regular expression

reserved characters in a given string. This function operates on a single sub-component, escaping all of

the reserved regular expression characters. For a complete listing of the reserved regular expression

characters, see the common subset of the Perl 5’s regular expression syntax that the OVAL Language

supports in Appendix D - Regular Expression Support.

Property Type Multiplicity Description

value ComponentGroup 1 Any type from the ComponentGroup.

 SplitFunctionType 4.3.41

The SplitFunctionType defines a function that splits a string value into multiple values, based on a

specified delimiter. This function operates on a single sub-component and results in an array of values,

where each values is the splitting the subject string using the specified delimiter.

If the sub-component being split includes a string that either begins with or ends with the delimiter,

there will be an empty string value included either at the beginning or end, respectively.

If multiple instances of the delimiter appear consecutively, each instance will result in an additional

empty string value.

If the delimiter is not found in the subject string, the entire subject string will be included in the result.

Property Type Multiplicity Description

delimiter string 1 The string to use as a delimiter.

value ComponentGroup 1 Any type from the ComponentGroup.

 SubstringFunctionType 4.3.42

The SubstringFunctionType defines a function that takes a string value and produces a value

that contains a portion of the original string.

OVAL Definitions::EscapeRegexFunctionType
OVAL Definitions::ComponentGroup

1 1

-delimiter[1] : string

OVAL Definitions::SplitFunctionType
OVAL Definitions::ComponentGroup

1 1

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

57

Copyright © 2012, The MITRE Corporation. All rights reserved.

Property Type Multiplicity Description

substring_start int 1 The starting index to use for the substring. This
property is 1-based, meaning that a value of 1
represents the first character of the subject
string. A value less than 1 is also interpreted as
the first character in the subject string. If the
substring_start property exceeds the
length of the subject string an error MUST be
reported.

substring_length int 1 Represents the length of the substring to be
taken from the source string, including the
starting character. Any substring_length that
exceeds the length of the string or is negative
indicates to include all characters from the
starting character until the end of the source
string.

value ComponentGroup 1 Any type from the ComponentGroup.

 TimeDifferenceFunctionType 4.3.43

The TimeDifferenceFunctionType defines a function that produces a value containing the

difference in seconds between two date-time values. If a single sub-component is specified, then the

time difference is between the specified date-time and the current date-time. If two sub-components

are specified, then the difference is that between the two specified date-times.

Property Type Multiplicity Description

format_1 DateTimeFormatEnumeration 0..1 The format for the first date-time value
specified. Note: If specifying a single value,
use format_1 to specify the implied
current date-time.

Default Value: ‘year_month_day’

format_2 DateTimeFormatEnumeration 0..1 The format for the second date-time value
specified. Note: If specifying a single value,

use format_2 to specify the value’s
format, as format_1 is used for the
implied current date-time.

Default Value: ‘year_month_day’

-substring_start[1] : int

-substring_length[1] : int

OVAL Definitions::SubstringFunctionType

OVAL Definitions::ComponentGroup

1 1

-format_1[0..1] : DateTimeFormatEnumeration = year_month_day

-format_2[0..1] : DateTimeFormatEnumeration = year_month_day

OVAL Definitions::TimeDifferenceFunctionType

OVAL Definitions::ComponentGroup

1 1..2

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

58

Copyright © 2012, The MITRE Corporation. All rights reserved.

value ComponentGroup 1..2 Any type from the ComponentGroup.

If a sub-component value does not conform to the format specified in the

DateTimeFormatEnumeration an error MUST be reported.

The datatype associated with the sub-components MUST be 'string' or 'int' depending on which date

time format is specified. The result of this function is always an integer. The following table states which

datatype MUST be used with which format from the DateTimeFormatEnumeration.

DateTimeFormatEnumeration Value Datatype

year_month_day string

month_day_year string

day_month_year string

win_filetime int

seconds_since_epoch int

 UniqueFunctionType 4.3.44

The UniqueFunctionType defines a function that removes any duplicate value from the set of

values represented by one or more components. This function takes one or more sub-components and

removes any duplicate values across the sub-components. A duplicate value is defined as any value that

is equal to another value when compared as a string value. See oval:DatatypeEnumeration in

Section 5.2.4.5.3 Datatype for more information on comparing two string values.

Property Type Multiplicity Description

values ComponentGroup 1..* Any type from the ComponentGroup.

 RegexCaptureFunctionType 4.3.45

The RegexCaptureFunctionType defines a function that takes a string value and uses a regular

expression to create a substring of the value. This function operates on a single sub-component and

results in a value that represents a match when the specified regular expression is applied to the values

of the sub-component.

The pattern property specifies the regular expression, which must contain a single sub-expression

(using parenthesis). If multiple sub-expressions are present, only the first match is used. Likewise, if

more than one match is found for the sub-expression, only the first one is used. If no matches are found,

an empty string MUST be returned.

For more information about supported regular expressions, see the common subset of the Perl 5’s

regular expression syntax that the OVAL Language supports in Appendix D - Regular Expression Support.

oval-def::UniqueFunctionType

1 1..*

oval-def::ComponentGroup

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

59

Copyright © 2012, The MITRE Corporation. All rights reserved.

Property Type Multiplicity Description

pattern string 1 The string to use as a regular expression
pattern.

value ComponentGroup 1 Any type from the ComponentGroup.

 ArithmeticEnumeration 4.3.46

The ArithmeticEnumeration defines an enumeration for the possible values for the

arithmetic function.

Enumeration Value Description

add Indicates addition.

multiply Indicates multiplication.

 DateTimeFormatEnumeration 4.3.47

The DateTimeFormatEnumeration defines an enumeration for the possible values for the date-

time values.

Enumeration Value Description

year_month_day This value indicates a format that follows the following patterns:

 yyyymmdd

 yyyymmddThhmmss

 yyyy/mm/dd hh:mm:ss

 yyyy/mm/dd

 yyyy-mm-dd hh:mm:ss

 yyyy-mm-dd

month_day_year This value indicates a format that follows the following patterns:

 mm/dd/yyyy hh:mm:ss

 mm/dd/yyyy

 mm-dd-yyyy hh:mm:ss

 mm-dd-yyyy

 NameOfMonth, dd yyyy hh:mm:ss

 NameOfMonth, dd yyyy

 AbreviatedNameOfMonth, dd yyyy hh:mm:ss

 AbreviatedNameOfMonth, dd yyyy

day_month_year This value indicates a format that follows the following patterns:

 dd/mm/yyyy hh:mm:ss

 dd/mm/yyyy

 dd-mm-yyyy hh:mm:ss

-pattern[1] : string

OVAL Definitions::RegexCaptureFunctionType
OVAL Definitions::ComponentGroup

1 1

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

60

Copyright © 2012, The MITRE Corporation. All rights reserved.

 dd-mm-yyyy

win_filetime This value indicates a date-time that follows the windows file time format[20].

seconds_since_epoch This value indicates a date-time that represents the time in seconds since the
UNIX Epoch. The UNIX epoch is the time 00:00:00 UTC on January 1, 1970.

 FilterActionEnumeration 4.3.48

The FilterActionEnumeration defines an enumeration for the possible values for filtering a set

of items.

Enumeration Value Description

include A value that indicates to include matching items from the set.

exclude A value that indicates to exclude matching items from the set.

 SetOperatorEnumeration 4.3.49

The SetOperatorEnumeration defines an enumeration for the possible values defining a set.

Enumeration Value Description

COMPLEMENT A value that indicates to include only the elements from the first set that are not
found in the second.

INTERSECTION A value that indicates to include all of the values common to both sets.

UNION A value that indicates to include all values found in either of the sets.

 EntityAttributeGroup 4.3.50

The EntityAttributeGroup defines a set of attributes that are common to all OVAL Object and

OVAL State entities.

Some OVAL Entities provide additional restrictions on these attributes and their allowed values.

Property Type Multiplicity Description

datatype oval:DatatypeEnumeration 0..1 The datatype for the entity.
Default Value: ‘string’

operation oval:OperationEnumeration 0..1 The operation that is to be performed
on the entity.

Default Value: ‘equals’

mask Boolean 0..1 Tells the data collection that this
entity contains sensitive data. Data

marked with mask=’true’ should be
used only in the evaluation, and not
be included in the results.

Default Value: ‘false’

var_ref oval:VariableIDPattern 0..1 Points to a variable Identifier within
the OVAL document which should be
used to calculate the entity’s value.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

61

Copyright © 2012, The MITRE Corporation. All rights reserved.

var_check oval:CheckEnumeration 0..1 Directs how to either collect data or
evaluate state for the entity.

 EntitySimpleBaseType 4.3.51

The EntitySimpleBaseType is an abstract type that defines a base type for all simple entities.

Entities represent the individual properties for OVAL Objects and OVAL States.

Property Type Multiplicity Description

attributes EntityAttributeGroup 1 The standard attributes available to all
entities.

value String 0..1 The value of the entity.

An empty string value MUST be used
when referencing an OVAL Variable.

 EntityComplexBaseType 4.3.52

The EntityComplexBaseType is an abstract type that defines a base type for all complex entities.

Entities represent the individual properties for OVAL Objects and OVAL States.

Property Type Multiplicity Description

attributes EntityAttributeGroup 1 The standard attributes available to all
entities.

 EntityObjectIPAddressType 4.3.53

The EntityObjectIPAddressBaseType extends the EntitySimpleBaseType and describes

an IPv4 or IPv6 IP address.

Property Type Multiplicity Description

datatype oval:SimpleDatatypeEnumeration 1 Possible values:

 ‘ipv4_address’

 ‘ipv6_address’

Also allows an empty string value.

 EntityObjectIPAddressStringType 4.3.54

The EntityObjectIPAddressStringBaseType extends the EntitySimpleBaseType and

describes an IPv4 or IPv6 IP address or a string representation of the address.

Property Type Multiplicity Description

datatype oval:SimpleDatatypeEnumeration 1 Possible values:

 ‘ipv4_address’

 ‘ipv6_address’

 ‘string’

Also allows an empty string value.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

62

Copyright © 2012, The MITRE Corporation. All rights reserved.

 EntityObjectAnySimpleType 4.3.55

The EntityObjectAnySimpleType extends the EntitySimpleBaseType and describes any

simple data.

Property Type Multiplicity Description

datatype oval:SimpleDatatypeEnumeration 1 Any simple datatype.

Also allows an empty string value.

 EntityObjectBinaryType 4.3.56

The EntityObjectBinaryType extends the EntitySimpleBaseType and describes any

simple binary data.

Property Type Multiplicity Description

datatype oval:SimpleDatatypeEnumeration 1 This value is fixed as ‘binary’.

Also allows an empty string value.

 EntityObjectBoolType 4.3.57

The EntityObjectBoolType extends the EntitySimpleBaseType and describes any simple

Boolean data.

Property Type Multiplicity Description

datatype oval:SimpleDatatypeEnumeration 1 This value is fixed as ‘boolean’.

Also allows an empty string value.

 EntityObjectFloatType 4.3.58

The EntityObjectFloatType extends the EntitySimpleBaseType and describes any simple

float data.

Property Type Multiplicity Description

datatype oval:SimpleDatatypeEnumeration 1 This value is fixed as ‘float’.

Also allows an empty string value.

 EntityObjectIntType 4.3.59

The EntityObjectIntType extends the EntitySimpleBaseType and describes any simple

integer data.

Property Type Multiplicity Description

datatype oval:SimpleDatatypeEnumeration 1 This value is fixed as ‘int’.

Also allows an empty string value.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

63

Copyright © 2012, The MITRE Corporation. All rights reserved.

 EntityObjectStringType 4.3.60

The EntityObjectStringType extends the EntitySimpleBaseType and describes any

simple string data.

Property Type Multiplicity Description

datatype oval:SimpleDatatypeEnumeration 0..1 This value is fixed as ‘string’.

 EntityObjectRecordType 4.3.61

The EntityObjectRecordType extends the EntityComplexBaseType and allows assertions

to be made on entities with uniquely named fields. It is intended to be used to assess the results of

things such as SQL statements and similar data.

Property Type Multiplicity Description

datatype oval:ComplexDatatypeEnumeration 1 This value is fixed as ‘record’.

operation oval:OperationEnumeration 0..1 This value is fixed as ‘equals’.

mask boolean 0..1 Tells the data collection that this
entity contains sensitive data.

Data marked with mask=’true’
should be used only in the
evaluation, and not be included
in the results.

Note that when the mask
property is set to 'true', all child
field elements must be masked
regardless of the child field's
mask attribute value.

Default Value: ‘false’

var_ref oval:VariableIDPattern 0..1 Use of this property is prohibited.

var_check oval:CheckEnumeration 0..1 Use of this property is prohibited.

 EntityObjectFieldType 4.3.62

The EntityObjectFieldType defines an entity type that captures the details of a single field for a

record.

Property Type Multiplicity Description

attributes EntityAttributeGroup 1 The standard attributes available to all

oval-def::EntityComplexBaseType

oval-def::EntityObjectRecordType
oval-def::EntityObjectFieldType

1 1..*

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

64

Copyright © 2012, The MITRE Corporation. All rights reserved.

entities.

name string 1 The name of the field. Names MUST be
all lower case characters in the range of
a-z.

value string 0..1 The value of the field.

An empty string value MUST be used
when referencing an OVAL Variable.

 EntityStateSimpleBaseType 4.3.63

The EntityStateSimpleBaseType extends the EntitySimpleBaseType and defines a simple

base type for OVAL States.

Property Type Multiplicity Description

entity_check oval:CheckEnumeration 0..1 Defines how to handle multiple item
entities with the same name.

Default Value: ‘all’

Value string 0..1 The value of the entity.

An empty string value MUST be used
when referencing an OVAL Variable.

 EntityStateComplexBaseType 4.3.64

The EntityStateComplexBaseType extends the EntityComplexBaseType defines a

complex base type for OVAL States.

Property Type Multiplicity Description

entity_check oval:CheckEnumeration 0..1 Defines how to handle multiple item
entities with the same name.

Default Value: ‘all’

 EntityStateIPAddressType 4.3.65

The EntityStateIPAddressBaseType extends the EntityStateSimpleBaseType and

describes an IPv4 or IPv6 IP address.

Property Type Multiplicity Description

datatype oval:SimpleDatatypeEnumeration 1 Possible values:

 ‘ipv4_address’

 ‘ipv6_address’

Also allows an empty string value.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

65

Copyright © 2012, The MITRE Corporation. All rights reserved.

 EntityStateIPAddressStringType 4.3.66

The EntityStateIPAddressStringBaseType extends the EntityStateSimpleBaseType

and describes an IPv4 or IPv6 IP address or a string representation of the address.

Property Type Multiplicity Description

datatype oval:SimpleDatatypeEnumeration 1 Possible values:

 ‘ipv4_address’

 ‘ipv6_address’

 ‘string’

Also allows an empty string value.

 EntityStateAnySimpleType 4.3.67

The EntityStateAnySimpleType extends the EntityStateSimpleBaseType and describes

any simple data.

Property Type Multiplicity Description

datatype oval:SimpleDatatypeEnumeration 1 Any simple datatype.

Also allows an empty string value.

 EntityStateBinaryType 4.3.68

The EntityStateAnyBinaryType extends the EntityStateSimpleBaseType and describes

any simple binary data.

Property Type Multiplicity Description

datatype oval:SimpleDatatypeEnumeration 1 This value is fixed as ‘binary’.

Also allows an empty string value.

 EntityStateBoolType 4.3.69

The EntityStateBoolType extends the EntityStateSimpleBaseType and describes any

simple Boolean data.

Property Type Multiplicity Description

datatype oval:SimpleDatatypeEnumeration 1 This value is fixed as ‘boolean’.

Also allows an empty string value.

 EntityStateFloatType 4.3.70

The EntityStateFloatType extends the EntityStateSimpleBaseType and describes any

simple float data.

Property Type Multiplicity Description

datatype oval:SimpleDatatypeEnumeration 1 This value is fixed as ‘float’.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

66

Copyright © 2012, The MITRE Corporation. All rights reserved.

Also allows an empty string value.

 EntityStateIntType 4.3.71

The EntityStateIntType extends the EntityStateSimpleBaseType and describes any

simple integer data.

Property Type Multiplicity Description

datatype oval:SimpleDatatypeEnumeration 1 This value is fixed as ‘int’.

Also allows an empty string value.

 EntityStateEVRStringType 4.3.72

The EntityStateEVRStringType extends the EntityStateSimpleBaseType and describes

an EPOCH:VERSION-RELEASE string data.

Property Type Multiplicity Description

datatype oval:SimpleDatatypeEnumeration 1 This value is fixed as ‘evr_string’.

Also allows an empty string value.

 EntityStateVersionType 4.3.73

The EntityStateVersionType extends the EntityStateSimpleBaseType and describes a

version string data.

Property Type Multiplicity Description

datatype oval:SimpleDatatypeEnumeration 1 This value is fixed as ‘version’.

Also allows an empty string value.

 EntityStateFileSetRevisionType 4.3.74

The EntityStateFileSetRevisionType extends the EntityStateSimpleBaseType and

describes a file set revision string data.

Property Type Multiplicity Description

datatype oval:SimpleDatatypeEnumeration 1 This value is fixed as
‘fileset_revision’.

Also allows an empty string value.

 EntityIOSVersionType 4.3.75

The EntityStateIOSVersionType extends the EntityStateSimpleBaseType and

describes a Cisco IOS version string data.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

67

Copyright © 2012, The MITRE Corporation. All rights reserved.

Property Type Multiplicity Description

datatype oval:SimpleDatatypeEnumeration 1 Possible values:

 ‘ios_version’

 ‘string’

The string type is an option in order
to allow use of regular expressions.

Also allows an empty string value.

 EntityStateStringType 4.3.76

The EntityStateStringType extends the EntityStateSimpleBaseType and describes any

simple string data.

Property Type Multiplicity Description

datatype oval:SimpleDatatypeEnumeration 0..1 This value is fixed as ‘string’.

Also allows an empty string value.

 EntityStateRecordType 4.3.77

The EntityStateRecordType extends the EntityStateComplexBaseType and allows

assertions to be made on entities with uniquely named fields. It is intended to be used to assess the

results of things such as Structured Query Language (SQL) statements and similar data.

Property Type Multiplicity Description

datatype oval:ComplexDatatypeEnumeration 1 This value is fixed as ‘record’.

operation oval:OperationEnumeration 0..1 This value is fixed as ‘equals’.

mask boolean 0..1 Tells the data collection that this entity
contains sensitive data. Data marked
with mask=’true’ should be used only

OVAL Definitions::EntityStateRecordType
OVAL Definitions::EntityStateFieldType

1 1..*

OVAL Definitions::EntityStateComplexBaseType

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

68

Copyright © 2012, The MITRE Corporation. All rights reserved.

in the evaluation, and not be included
in the results.

Note that when the mask property is
set to 'true', all child field elements
must be masked regardless of the

child field's mask attribute value.

Default Value: ‘false’

var_ref oval:VariableIDPattern 0..1 Use of this property is prohibited.

var_check oval:CheckEnumeration 0..1 Use of this property is prohibited.

 EntityStateFieldType 4.3.78

The EntityStateFieldType defines an entity type that captures the details of a single field for a

record.

Property Type Multiplicity Description

attributes EntityAttributeGroup 1 The standard attributes available to all
entities.

name string 1 The name of the field. Names MUST be all
lower case characters in the range of a-z.

entity_check oval:CheckEnumeration 0..1 Directs how to evaluate state for the entity.

Default Value: ‘all’

value string 0..1 The value of the field.

An empty string value MUST be used when
referencing an OVAL Variable.

4.4 OVAL Variables Model
The OVAL Variables Model contains constructs that allow for the specification of values for

external_variables defined in content that was created using the OVAL Definitions Model. The

OVAL Variables Model serves as a useful mechanism for parameterizing content based on the OVAL

Definitions Model.

 oval_variables 4.4.1

The oval_variables type defines the base structure in the OVAL Variables Model for representing a

collection of OVAL Variables and their associated values. This container type adds metadata about the

origin of the content and allows for a signature.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

69

Copyright © 2012, The MITRE Corporation. All rights reserved.

OVAL Variables::oval_variables

OVAL Common::GeneratorType

OVAL::Signature
1

0..1

1

1

OVAL Variables::VariablesType

1 0..1

Property Type Multiplicity Description

generator oval:GeneratorType 1 Information regarding the
generation of the OVAL Variables
content. The timestamp property

of the generator MUST represent
the time at which the
oval_variables was created.

variables VariablesType 1 The variables defined in the OVAL
Variables content.

signature ext:Signature 0..1 Mechanism to ensure the integrity
and authenticity of the OVAL
Variables content.

 VariablesType 4.4.2

The VariablesType construct is a container for one or more OVAL Variables.

Property Type Multiplicity Description

variable VariableType 1..* A collection of OVAL Variables.

 VariableType 4.4.3

The VariableType defines a variable in the OVAL Variables Model that corresponds to an instance of

an external variable in content based on the OVAL Definitions Model.

Property Type Multiplicity Description

id oval:VariableIDPattern 1 The unique identifier of an
external variable.

datatype oval:SimpleDatatypeEnumeration 1 The datatype of the value(s) in
the variable.

comment string 1 The documentation associated
with the variable instance.

value string 1..* The value(s) associated with
the variable.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

70

Copyright © 2012, The MITRE Corporation. All rights reserved.

4.5 OVAL System Characteristics Model
The OVAL System Characteristics Model is used to represent low-level, system settings that describe the

current state of a system. The OVAL System Characteristics Model serves as a basis for extension to

create platform-specific, low-level configuration information models.

Property Type Multiplicity Description

generator oval:GeneratorType 1 Information regarding the

generation of the OVAL System

Characteristics. The timestamp

property of the generator MUST

represent the time at which the

system state information was

collected.

system_info SystemInfoType 0..* Information used to identify the
system under test.

collected_objects CollectedObjectsType 0..1 Contains the mapping between
OVAL Objects defined in the OVAL
Definitions and the OVAL Items that
were collected from the system
under test.

system_data SystemDataType 0..1 Contains the OVAL Items that were
collected from the system under
test.

signature ext:Signature 0..1 Mechanism to ensure the integrity

and authenticity of the OVAL System

Characteristics content.

 SystemInfoType 4.5.1

The SystemInfoType defines the basic identifying information associated with the system under

test.

OVAL System Characteristics::oval_system_characteristics

OVAL Common::GeneratorType

OVAL System Characteristics::SystemInfoType

OVAL System Characteristics::CollectedObjectType

OVAL System Characteristics::SystemDataType

OVAL::Signature

1 0..1

1
1

1

1

1

0..1

1

0..1

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

71

Copyright © 2012, The MITRE Corporation. All rights reserved.

Property Type Multiplicity Description

os_name string 1 The operating system running on the system
under test.

os_version string 1 The version of the operating system running on
the system under test.

architecture string 1 The hardware architecture type of the system
under test.

primary_host_name string 1 The primary host name of the system under test.

interfaces InterfaceType 0..* The network interface(s) present on the system
under test.

extension_point Any 0..* An extension point that allows for the inclusion of
any additional identifying information associated
with the system under test.

 InterfacesType 4.5.2

The InterfacesType provides a container for zero or more interfaces.

Property Type Multiplicity Description

interface InterfaceType 0..* One or more interfaces.

 InterfaceType 4.5.3

The InterfaceType defines the information associated with a network interface on the system

under test. This information may help to identify a specific system on a network.

Property Type Multiplicity Description

interface_name string 1 The name of the interface.

ip_address string 1 The Internet Protocol (IP) address of the interface.

mac_address string 1 The Media Access Control (MAC) address of the interface.
MAC addresses MUST be formatted according to IEEE 802-
2001 Section 9.2.1 [7].

 CollectedObjectsType 4.5.4

The CollectedObjectType is a container for one or more objects of type ObjectType that were

used for data collection on the system under test.

 ObjectType 4.5.5

-os_name[1] : string

-os_version[1] : string

-architecture[1] : string

-primary_host_name[1] : string

-extension_point[0..*] : Any

OVAL System Characteristics::SystemInfoType

1 1

OVAL System Characteristics::InterfacesType

OVAL System Characteristics::CollectedObjectType OVAL System Characteristics::ObjectType

1 1..*

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

72

Copyright © 2012, The MITRE Corporation. All rights reserved.

The ObjectType provides a mapping between an OVAL Object, defined in content based on the OVAL

Definitions Model, and the OVAL Items collected on the system under test.

Property Type Multiplicity Description

id oval:ObjectIDPattern 1 The globally unique identifier of an OVAL
Object.

version unsigned integer 1 The version of the globally unique OVAL
Object.

variable_instance unsigned integer 0..1 The unique identifier that differentiates
between each unique instance of an OVAL
Object. If an OVAL Object utilizes an OVAL
Variable, a unique instance of each OVAL
Object must be created for each OVAL
Variable value.

Default Value: ‘1’

comment string 0..1 The documentation associated with the OVAL
Object referenced by the id property.

flag oval:FlagEnumeration 1 The outcome associated with OVAL Item
collection.

message oval:MessageType 0..* Any messages that are relayed from a tool at
run-time.

variable_value VariableValueType 0..* The value(s) associated with the variable(s)
used by the OVAL Object referenced by the id
property.

reference ReferenceType 0..* The identifiers of OVAL Items collected by the
OVAL Object referenced by the id property.

 VariableValueType 4.5.6

The VariableValueType identifies an OVAL Variable and value that is used by an OVAL Object

during OVAL Item collection.

Property Type Multiplicity Description

variable_id oval:VariableIDPattern 1 The unique identifier of an OVAL Variable.

-id[1] : ObjectIDPattern

-version[1] : unsigned int

-variable_instance[0..1] : unsigned int = 1

-comment[0..1] : string

-flag[1] : FlagEnumeration

OVAL System Characteristics::ObjectType

OVAL Common::MessageType

OVAL System Characteristics::VariableValueType

OVAL System Characteristics::ReferenceType

1

0..*

1

0..*

1 0..*

OVAL Definitions::ObjectType

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

73

Copyright © 2012, The MITRE Corporation. All rights reserved.

value string 1 A value associated with the OVAL Variable

identified by the variable_id property.

 ReferenceType 4.5.7

The ReferenceType identifies an OVAL Item that was collected during OVAL Item collection.

Property Type Multiplicity Description

item_ref oval:ItemIDPattern 1 The unique identifier of an OVAL Item.

 SystemDataType 4.5.8

The SystemDataType provides a container for all of the OVAL Items that were collected on the

system under test.

 ItemType 4.5.9

The ItemType is the abstract OVAL Item that defines the common properties associated with all OVAL

Items defined in the OVAL System Characteristics OVAL Component Models.

Property Type Multiplicity Description

id oval:ItemIDPattern 1 The unique identifier of an OVAL Item. The id

property is unique with in a given instantiation

of the OVAL System Characteristics Model.

status StatusEnumeration 0..1 The status property of an OVAL Item conveys

the outcome of the system data collection

effort.

Default Value: ‘exists’

message MessageType 0..50 Any messages that are relayed from a tool at
run-time during the collection of an OVAL Item.

 EntityAttributeGroup 4.5.10

The EntityAttributeGroup defines the properties that are common to all OVAL Item Entities in

the OVAL Language.

Property Type Multiplicity Description

OVAL System Characteristics::SystemDataType OVAL System Characteristics::ItemType

1 1..*

-id[1] : ItemIDPattern

-status[0..1] : StatusEnumeration = exists

OVAL System Characteristics::ItemType

OVAL Common::MessageType

1 0..50

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

74

Copyright © 2012, The MITRE Corporation. All rights reserved.

datatype oval:DatatypeEnumeration 0..1 The unique identifier of an OVAL
Item.

Default Value: ‘string’

mask boolean 0..1 Tells the data collection that this
entity contains sensitive data. Data
marked with mask=’true’ should be
used only in the evaluation, and not
be included in the results.

Note that when the mask property
is set to 'true', all child field
elements must be masked

regardless of the child field's mask
attribute value.

Default Value: ‘false’

status StatusEnumeration 0..1 The status of the collection for an
OVAL Item Entity.

Default Value: ‘exists’

 FlagEnumeration 4.5.11

The FlagEnumeration defines the acceptable outcomes associated with the collection of OVAL

Items for a specified OVAL Object.

Enumeration Value Description

error This value indicates that an error prevented the determination of the existence
of OVAL Items on the system.

complete This value indicates that every matching OVAL Item on the system has been
identified and represented in the OVAL System Characteristics. It can be assumed
that no additional matching OVAL Items exist on the system.

incomplete This value indicates that matching OVAL Items exist on the system, however, only
a subset of those matching OVAL Items have been identified and represented in
the OVAL System Characteristics. It cannot be assumed that no additional
matching OVAL Items exist on the system.

does not exist This value indicates that no matching OVAL Items were found on the system.

not collected This value indicates that no attempt was made to collect OVAL Items on the
system.

not applicable This value indicates that the specified OVAL Object is not applicable to the
system under test.

 StatusEnumeration 4.5.12

The StatusEnumeration defines the acceptable status values associated with the collection of an

OVAL Item or the properties of an OVAL Item.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

75

Copyright © 2012, The MITRE Corporation. All rights reserved.

Enumeration Value Description

error This value indicates that there was an error collecting an OVAL Item or a property
of an OVAL Item.

exists This value indicates that an OVAL Item, or a property of an OVAL Item, exists on

the system and was collected.

does not exist This value indicates that an OVAL Item, or a property of an OVAL Item, does not

exist on the system.

not collected This value indicates that no attempt was made to collect an OVAL Item or a
property of an OVAL Item.

 EntityItemSimpleBaseType 4.5.13

The EntityItemSimpleBaseType is an abstract type that defines a base type for all simple OVAL

Item Entities.

Property Type Multiplicity Description

attributes EntityAttributeGroup 1 The standard attributes available to all
entities.

value string 0..1 The value of the entity.

An empty string value SHOULD be used
when a status other than 'exists' is
specified.

 EntityItemComplexBaseType 4.5.14

The EntityComplexBaseType is an abstract type that defines a base type for all complex OVAL

Item Entities.

Property Type Multiplicity Description

attributes EntityAttributeGroup 1 The standard attributes available to all
entities.

 EntityItemIPAddressType 4.5.15

The EntityItemIPAddressType extends the EntityItemSimpleBaseType and describes an

IPv4 or IPv6 IP address or prefix.

Property Type Multiplicity Description

datatype oval:SimpleDatatypeEnumeration 1 Possible values:

 ‘ipv4_address’

 ‘ipv6_address’

Also allows an empty string value.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

76

Copyright © 2012, The MITRE Corporation. All rights reserved.

 EntityItemIPAddressStringType 4.5.16

The EntityItemIPAddressStringBaseType extends the EntityItemSimpleBaseType

and describes an IPv4 or IPv6 IP address or prefix or a string representation of the address.

Property Type Multiplicity Description

datatype oval:SimpleDatatypeEnumeration 1 Possible values:

 ‘ipv4_address’

 ‘ipv6_address’

 ‘string’

Also allows an empty string value.

 EntityItemAnySimpleType 4.5.17

The EntityItemAnySimpleType extends the EntityItemSimpleBaseType and describes

any simple data.

Property Type Multiplicity Description

datatype oval:SimpleDatatypeEnumeration 1 Any simple datatype.

Also allows an empty string value.

 EntityItemBinaryType 4.5.18

The EntityItemAnySimpleType extends the EntityItemSimpleBaseType and describes

any simple binary data.

Property Type Multiplicity Description

datatype oval:SimpleDatatypeEnumeration 1 This value is fixed as ‘binary’.

Also allows an empty string value.

 EntityItemBoolType 4.5.19

The EntityObjectBoolType extends the EntityItemSimpleBaseType and describes any

simple boolean data.

Property Type Multiplicity Description

datatype oval:SimpleDatatypeEnumeration 1 This value is fixed as ‘boolean’.

Also allows an empty string value.

 EntityItemFloatType 4.5.20

The EntityItemFloatType extends the EntityItemSimpleBaseType and describes any

simple float data.

Property Type Multiplicity Description

datatype oval:SimpleDatatypeEnumeration 1 This value is fixed as ‘float’.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

77

Copyright © 2012, The MITRE Corporation. All rights reserved.

Also allows an empty string value.

 EntityItemIntType 4.5.21

The EntityItemIntType extends the EntityItemSimpleBaseType and describes any simple

integer data.

Property Type Multiplicity Description

datatype oval:SimpleDatatypeEnumeration 1 This value is fixed as ‘int’.

Also allows an empty string value.

 EntityItemStringType 4.5.22

The EntityItemStringType extends the EntityItemSimpleBaseType and describes any

simple string data.

Property Type Multiplicity Description

datatype oval:SimpleDatatypeEnumeration 0..1 This value is fixed as ‘string’.

 EntityItemRecordType 4.5.23

The EntityItemRecordType extends the EntityItemComplexBaseType and allows

assertions to be made on entities with uniquely named fields. It is intended to be used to assess the

results of things such as SQL statements and similar data.

Property Type Multiplicity Description

datatype oval:ComplexDatatypeEnumeration 0..1 This value is fixed as ‘record’.

field EntityStateFieldType 0..* Defines the name of the field
whose value will be assessed.

 EntityItemFieldType 4.5.24

The EntityItemFieldType defines an entity type that captures the details of a single field for a

record.

Property Type Multiplicity Description

attributes EntityAttributeGroup 1 The standard attributes available to all
entities.

name string 1 The name of the field. Names MUST be all
lower case characters in the range of a-z.

value string 0..1 The value of the field.

OVAL System Characteristics::EntityItemFieldType
OVAL System Characteristics::EntityItemRecordType

1 0..*

OVAL System Characteristics::EntityItemComplexBaseType

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

78

Copyright © 2012, The MITRE Corporation. All rights reserved.

An empty string value SHOULD be used
when a status other than 'exists' is
specified.

 EntityItemVersionType 4.5.25

The EntityItemVersionType extends the EntityItemSimpleBaseType and describes a

version string data.

Property Type Multiplicity Description

datatype oval:SimpleDatatypeEnumeration 1 This value is fixed as ‘version’.

Also allows an empty string value.

 EntityItemFileSetRevisionType 4.5.26

The EntityItemFileSetRevisionType extends the EntityItemSimpleBaseType and

describes a file set revision string data.

Property Type Multiplicity Description

datatype oval: SimpleDatatypeEnumeration 1 This value is fixed as
‘fileset_revision’.

Also allows an empty string value.

 EntityItemIOSVersionType 4.5.27

The EntityItemIOSVersionType extends the EntityItemSimpleBaseType and describes a

Cisco IOS version string data.

Property Type Multiplicity Description

datatype oval:SimpleDatatypeEnumeration 1 Possible values:

 ‘ios_version’

 ‘string’

The string type is an option in order
to allow use of regular expressions.

 EntityItemEVRStringType 4.5.28

The EntityItemEVRStringType extends the EntityItemSimpleBaseType and describes an

EPOCH:VERSION-RELEASE string data.

Property Type Multiplicity Description

datatype oval:SimpleDatatypeEnumeration 1 This value is fixed as ‘evr_string’.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

79

Copyright © 2012, The MITRE Corporation. All rights reserved.

Also allows an empty string value.

4.6 OVAL Results Model
The OVAL Results Model is used to report the results of an evaluation of a set of systems based upon a

set of OVAL Definitions leveraging the OVAL System Characteristics. In this way, the OVAL Results Model

provides detailed information about the set of assertions that were evaluated, the observed states of

the evaluated systems, and the detailed results of the evaluation.

Property Type Multiplicity Description

generator oval:GeneratorType 1 Information regarding the generation of

the OVAL Results content. The

timestamp property of the

generator MUST represent the time at

which the oval_results was created.

directives DefaultDirectivesType 1 Describes the default set of directives

that specify the results that have been

included in the OVAL Results. The

default_directives MUST be used

for any OVAL Definitions result value

that is not overridden by a

class_directives construct.

class_directives ClassDirectivesType 0..5 Describes the set of directives that

specify the class-specific results that have

been included in the OVAL Results. The

class_directives MAY be used to

OVAL Results::oval_results

OVAL Results::ClassDirectivesType

OVAL Results::DefaultDirectivesType

OVAL Common::GeneratorType

OVAL::Signature

OVAL Results::ResultsType

1

1

1

0..5

1
11

1

1

0..1

OVAL Definitions::oval_definitions
1

0..1

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

80

Copyright © 2012, The MITRE Corporation. All rights reserved.

override the default directives.

oval_definitions oval-def:oval_definitions 0..1 The source OVAL Definitions used to

generate the OVAL Results.

results ResultsType 1 Contains the evaluation results for all
OVAL Definitions on all systems under
test.

signature ext:Signature 0..1 Mechanism to ensure the integrity and

authenticity of the OVAL Results content.

 DirectivesType 4.6.1

The DirectivesType defines what result information has been included, and to what level of detail,

in the OVAL Results, for each possible result value defined in the ResultEnumeration.

Property Type Multiplicity Description

definition_true DirectiveType 1 Defines what result information has been
included for OVAL Definitions that evaluate
to ‘true’.

definition_false DirectiveType 1 Defines what result information has been
included for OVAL Definitions that evaluate
to ‘false’.

definition_unknown DirectiveType 1 Defines what result information has been
included for OVAL Definitions that evaluate
to ‘unknown’.

definition_error DirectiveType 1 Defines what result information has been
included for OVAL Definitions that evaluate
to ‘error’.

definition_not_evaluated DirectiveType 1 Defines what result information has been
included for OVAL Definitions that evaluate
to ‘not evaluated’.

definition_not_applicable DirectiveType 1 Defines what result information has been
included for OVAL Definitions that evaluate
to ‘not applicable’.

 DefaultDirectivesType 4.6.2

The DefaultDirectivesType defines the result information to include in the OVAL Results for all

OVAL Definitions regardless of class as defined in the ClassEnumeration.

OVAL Results::DirectivesType OVAL Results::DirectiveType

1 6

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

81

Copyright © 2012, The MITRE Corporation. All rights reserved.

Property Type Multiplicit
y

Description

include_source_definitions boolean 0..1 Specifies whether or not the source OVAL
Definitions are included in the OVAL Results.
When ‘true’ the source OVAL Definitions MUST
be included in the OVAL Results. When ‘false’
the source OVAL Definitions MUST NOT be
included in the OVAL Results.

Default Value: ‘true’

 ClassDirectivesType 4.6.3

The ClassDirectivesType defines the result information to include in the OVAL Results for a

specific class of OVAL Definitions as defined in the ClassEnumeration. Please note that this will

override the directives in the DefaultDirectivesType for the specified class.

Property Type Multiplicity Description

class oval:ClassEnumeration 1 Specifies the class of OVAL Definitions to which the

defined OVAL Results directives will be applied.

 DirectiveType 4.6.4

The DirectiveType defines what result information, and to what level of detail, is included in OVAL

Results.

Property Type Multiplicity Description

reported boolean 1 Specifies whether or not OVAL Definitions, with the
specified result, should be included in the OVAL

Results. If the reported property is set to ‘true’,
OVAL Definitions that evaluate to the specified result
MUST be included in the OVAL Results. If the

-include_source_definitions : boolean = true

OVAL Results::DefaultDirectivesType

OVAL Results::DirectivesType

OVAL Results::DirectivesType

-class : ClassEnumeration

OVAL Results::ClassDirectivesType

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

82

Copyright © 2012, The MITRE Corporation. All rights reserved.

reported property is set to ‘false’, OVAL Definitions
that evaluate to the specified result MUST NOT be
included in the OVAL Results.

content ContentEnumeration 0..1 Specifies the level of detail that is included in the OVAL

Results.

Default Value: ‘full’

 ResultsType 4.6.5

The ResultsType contains the evaluation results for all OVAL Definitions on all systems under test.

Property Type Multiplicity Description

results SystemType 1..* The evaluation results for all OVAL Definitions on each
system under test.

 SystemType 4.6.6

The SystemType provides the evaluation results for the OVAL Definitions and OVAL Tests as well the

OVAL System Characteristics for an individual system.

Property Type Multiplicity Description

definitions DefinitionType 0..* The evaluation results of the
OVAL Definitions.

tests TestType 0..* The evaluation results of the
OVAL Tests.

system_characteristics oval-
sc:oval_system_characteristics

1 A copy of the OVAL System
Characteristics that were
evaluated against the OVAL
Definitions to produce the
OVAL Results.

 DefinitionType 4.6.7

The DefinitionType contains the results of the evaluation of an OVAL Definition.

OVAL Results::ResultsType OVAL Results::SystemType

1 1..*

OVAL Results::SystemType OVAL Results::TestType

OVAL System Characteristics::oval_system_characteristics

OVAL Results::DefinitionType

1 0..*

1

0..*

1

1

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

83

Copyright © 2012, The MITRE Corporation. All rights reserved.

Property Type Multiplicity Description

definition_id oval:DefinitionIDPattern 1 The unique identifier of an OVAL
Definition that was used to generate
the OVAL Results.

version unsigned int 1 The version of the globally unique
OVAL Definition.

variable_instance unsigned int 0..1 The unique identifier that
differentiates between each unique
instance of an OVAL Definition. If an
OVAL Definition utilizes an OVAL
Variable, a unique instance of each
OVAL Definition must be created for
each collection of values assigned to
the OVAL Variable.

Default Value: ‘1’

class oval:ClassEnumeration 0..1 The class of the OVAL Definition.

result ResultEnumeration 1 The result of the evaluation of the
OVAL Definition.

message oval:MessageType 0..* Any messages that are relayed from a
tool at run-time during the evaluation
of an OVAL Definition.

criteria CriteriaType 0..1 Contains the individual results of the
logical statements that form the
OVAL Definition.

 CriteriaType 4.6.8

The CriteriaType combines the logical statements that form the OVAL Definition.

-definition_id[1] : DefinitionIDPattern

-version[1] : unsigned int

-variable_instance[0..1] : unsigned int = 1

-class[0..1] : ClassEnumeration

-result[1] : ResultEnumeration

OVAL Results::DefinitionType
OVAL Common::MessageType

OVAL Results::CriteriaType1

0..1

1

0..*

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

84

Copyright © 2012, The MITRE Corporation. All rights reserved.

Property Type Multiplicity Description

operator oval:OperatorEnumeration 1 The logical operator that is used to
combine the individual results of the
logical statements defined by the
child_criteria property.

negate boolean 0..1 Specifies whether or not the
evaluation result of the OVAL
Definition, referenced by the

definition_ref property,
should be negated.

Default Value: ‘false’

result ResultEnumeration 1 The evaluation result after the
operator property and negate
property have been applied.

criteria CriteriaType 1..* Logical statements that will be
combined according to the
operator property.

applicability_check boolean 0..1 A boolean flag that when ‘true’
indicates that the criteria is
being used to determine whether the
OVAL Definition applies to a given
system. No additional meaning is
assumed when ‘false’.

 CriterionType 4.6.9

The CriterionType is a logical statement that references an OVAL Test from an OVAL Definition.

-operator[1] : OperatorEnumeration

-negate[0..1] : boolean = false

-result[0..1] : ResultEnumeration

-applicability_check[0..1] : boolean

OVAL Results::CriteriaType

OVAL Results::ExtendDefinitionType OVAL Results::CriterionType

1

0..*

1

0..*

1

0..*

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

85

Copyright © 2012, The MITRE Corporation. All rights reserved.

Property Type Multiplicity Description

test_ref oval:TestIDPattern 1 The unique identifier of an OVAL Test
contained in the OVAL Definitions used to
generate the OVAL Results.

version unsigned int 1 The version of the globally unique OVAL

Test referenced by the test_ref
property.

variable_instance unsigned int 0..1 The unique identifier that differentiates
between each unique instance of an OVAL
Test. If an OVAL Test utilizes an OVAL
Variable, a unique instance of each OVAL
Test must be created for each collection
of values assigned to the OVAL Variable.

Default Value: ‘1’

negate boolean 0..1 Specifies whether or not the evaluation
result of the OVAL Test, referenced by the
test_ref property, should be negated.

Default Value: ‘false’

result ResultEnumeration 1 The evaluation result of the OVAL Test,

referenced by the test_ref property,
after the negate property has been
applied.

applicability_check boolean 0..1 A boolean flag that when true indicates
that the criterion is being used to
determine whether the OVAL Definition
applies to a given system. No additional
meaning is assumed when ‘false’.

 ExtendDefinitionType 4.6.10

The ExtendDefinitionType is a logical statement that references another OVAL Definition.

-negate[0..1] : boolean = false

-applicability_check[0..1] : boolean

-test_ref[1] : TestIDPattern

-version[1] : unsigned int

-variable_instance[0..1] : unsigned int = 1

-result[1] : ResultEnumeration

OVAL Results::CriterionType

OVAL Results::TestType

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

86

Copyright © 2012, The MITRE Corporation. All rights reserved.

Property Type Multiplicity Description

definition_ref oval:DefinitionIDPattern 1 The unique identifier of an OVAL
Definition used to generate the
OVAL Results.

version unsigned int 1 The version of the globally unique
OVAL Definition referenced by the

definition_ref property.

variable_instance unsigned int 0..1 The unique identifier that
differentiates between each unique
instance of an OVAL Definition. If an
OVAL Definition utilizes an OVAL
Variable, a unique instance of each
OVAL Definition must be created for
each collection of values assigned to
the OVAL Variable.

Default Value: ‘1’

negate boolean 0..1 Specifies whether or not the
evaluation result of the OVAL
Definition, referenced by the
definition_ref property,
should be negated.

Default Value: ‘false’

result ResultEnumeration 1 The evaluation result of the OVAL
Definition, referenced by the

definition_ref property, after
the negate property has been
applied.

applicability_check boolean 0..1 A boolean flag that when true
indicates that the

ExtendDefinition is being
used to determine whether the
OVAL Definition applies to a given
system. No additional meaning is
assumed when ‘false’.

 TestType 4.6.11

The TestType contains the result of an OVAL Test.

-result[1] : ResultEnumeration

-variable_instance[0..1] : unsigned int = 1

-version[1] : unsigned int

-definition_ref[1] : DefinitionIDPattern

-applicability_check[0..1] : boolean

-negate[0..1] : boolean = false

OVAL Results::ExtendDefinitionType

OVAL Results::DefinitionType

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

87

Copyright © 2012, The MITRE Corporation. All rights reserved.

Property Type Multiplicity Description

test_id oval:TestIDPattern 1 The unique identifier of an OVAL Test

contained in the OVAL Definitions used

to generate the OVAL Results.

version unsigned int 1 The version of the globally unique OVAL

Test referenced by the test_id

property.

variable_instance unsigned int 0..1 The unique identifier that differentiates

between each unique instance of an

OVAL Test. If an OVAL Test utilizes an

OVAL Variable, a unique instance of

each OVAL Test must be created for

each collection of values assigned to the

OVAL Variable.

Default Value: ‘1’

check_existence oval:ExistenceEnumeration 0..1 Specifies how many OVAL Items must
exist, on the system, in order for the
OVAL Test to evaluate to true.

Default Value: ‘at_least_one_exists’

check oval:CheckEnumeration 1 Specifies how many of the collected
OVAL Items must satisfy the
requirements specified by the OVAL
State(s) in order for the OVAL Test to
evaluate to true.

state_operator oval:OperatorEnumeration 0..1 Specifies how to logically combine the

OVAL States referenced in the OVAL

Test.

Default Value: ‘AND’

result ResultEnumeration 1 The evaluation result of the OVAL Test
referenced by the test_id property.

-test_id[1] : TestIDPattern

-version[1] : unsigned int

-variable_instance[0..1] : unsigned int = 1

-check_existence[0..1] : ExistenceEnumeration = at_least_one_exists

-check[1] : CheckEnumeration

-state_operator[0..1] : OperatorEnumeration = AND

-result[1] : ResultEnumeration

OVAL Results::TestType

OVAL Results::TestedItemType

OVAL Results::TestedVariableType

OVAL Common::MessageType

1

0..*

1 0..*

1

0..*

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

88

Copyright © 2012, The MITRE Corporation. All rights reserved.

message oval:MessageType 0..* Any messages that are relayed from a
tool at run-time during the evaluation
of an OVAL Test.

tested_item TestedItemType 0..* Specifies a reference to each OVAL Item
used in the evaluation of an OVAL Test.

tested_variable TestedVariableType 0..* Specifies each OVAL Variable value used
in the evaluation of an OVAL Test. This
includes the OVAL Variable values used
in both OVAL Objects and OVAL States.

 TestedItemType 4.6.12

The TestedItemType contains the result of evaluating a collected OVAL Item against the OVAL

State(s), if any, as specified by the corresponding OVAL Test.

Property Type Multiplicity Description

item_id oval:ItemIDPattern 1 The unique identifier of an OVAL Item collected
during OVAL Item Collection.

result ResultEnumeration 1 The evaluation result of the OVAL Item against
the OVAL State(s), if any, as specified by the
corresponding OVAL Test.

message oval:MessageType 0..* Any messages that are relayed from a tool at
run-time during the evaluation of an OVAL Item
against an OVAL State.

 TestedVariableType 4.6.13

The TestedVariableType specifies the value of an OVAL Variable used during the evaluation of an

OVAL Test.

Property Type Multiplicity Description

variable_id oval:VariableIDPattern 1 The unique identifier of an OVAL Variable.

value Any 1 A value of the OVAL Variable referenced by

the variable_id property.

 ContentEnumeration 4.6.14

The ContentEnumeration defines the acceptable levels of detail for the result information included

in the OVAL Results.

-item_id[1] : ItemIDPattern

-result[1] : ResultEnumeration

OVAL Results::TestedItemType

OVAL Common::MessageType

1 0..*

OVAL System Characteristics::ItemType

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

89

Copyright © 2012, The MITRE Corporation. All rights reserved.

Enumeration Value Description

thin This value indicates that only the minimal amount of information is represented
in the OVAL Results. Specifically:

 The definition_id property of DefinitionType will be
included.

 The result property of DefinitionType will be included.

 The criteria property of DefinitionType will not be included.

 The collected_objects and system_data properties, of the

system_characteristics property in SystemType, will not be
included.

full This value indicates that a full detailed result of information is represented in the
OVAL Results. Specifically:

 The definition_id property of DefinitionType will be included.

 The result property of DefinitionType will be included.

 The criteria property of DefinitionType will be included.

 The collected_objects and system_data properties, of the
system_characteristics property in SystemType, will be
included.

The value ‘full’ is equivalent to ‘thin’ with the collected_objects and

system_data properties, of the system_characteristics property in
SystemType, included.

 ResultEnumeration 4.6.15

The ResultEnumeration defines the acceptable evaluation result values in the OVAL Language.

Enumeration Value Description

true This value indicates that the conditions of the evaluation were satisfied.

false This value indicates that the conditions of the evaluation were not satisfied.

unknown This value indicates that it could not be determined if the conditions of the
evaluation were satisfied.

error This value indicates that an error occurred during the evaluation.

not evaluated This value indicates that a choice was made not to perform the evaluation.

not applicable This value indicates that the evaluation being performed does not apply to the
given platform.

4.7 OVAL Directives Model
The OVAL Directives Model is used to control what result information is included in the OVAL Results as

well as specify its level of detail.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

90

Copyright © 2012, The MITRE Corporation. All rights reserved.

Property Type Multiplicity Description

generator oval:GeneratorType 1 Information regarding the
generation of the OVAL Directives

content. The timestamp property
of the generator MUST represent
the time at which the
oval_directives was created.

directives oval-res:DefaultDirectivesType 1 Describes the default set of
directives that specify the results
that have been included in the OVAL
Results.

class_directives oval-res:ClassDirectivesType 0..5 Describes the set of directives that
specify the class-specific results that
have been included in the OVAL
Results.

signature ext:Signature 0..1 Mechanism to ensure the integrity
and authenticity of the OVAL
Directives content.

5 Processing Model for the OVAL Language
The processing section describes in detail how the major components of the OVAL Language Data Model

are used to produce OVAL Definitions, OVAL System Characteristics, and OVAL Results. The diagram

below provides an overview of the complete process and highlights the major activities of this process.

OVAL Directives::oval_directives

OVAL Common::GeneratorType

OVAL Results::DefaultDirectivesType

OVAL Results::ClassDirectivesType

OVAL::Signature

1

1

1

0..1

1

1

1

0..5

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

91

Copyright © 2012, The MITRE Corporation. All rights reserved.

When producing OVAL Definitions there is assumed to be an advisory, policy, or other system state

description that is either manually translated or automatically processed to create an OVAL Definition.

The resulting OVAL Definition is based upon the low level system information that was specified and will

be the basis for both producing OVAL System Characteristics and producing OVAL Results.

OVAL System Characteristics are produced by collecting system data directly from an end system on

some other configuration information data store. This data collection subprocess can be controlled by

the OVAL Objects specified in the OVAL Definition, or by any other selection method. When OVAL

Objects are used to guide the data collection process OVAL Variables may be supplied to allow for

tailoring of the OVAL Objects. The collected system data is then compiled into OVAL System

Characteristics that includes information about the tool that collected the data and the set of OVAL

Objects that were used to guide data collection, if any.

OVAL Results are produced by comparing an OVAL Definition and the system state that it describes to

some observed system state as represented in OVAL System Characteristics. This comparison process,

referred to as Definition Evaluation, can be tailored by OVAL Variables and creates detailed assessment

results which are then used to generate OVAL Results. OVAL Results include information about the tool

that produced them and varying levels of assessment result information as specified by a set of OVAL

Directives.

5.1 Producing OVAL Definitions
Producing OVAL Definitions is the process by which information from some source external to OVAL is

consumed by a person, tool, or service and then transformed into an OVAL Definition. Often this

information comes from a security advisory, configuration checklist, or other data feed. Other times this

information must be created through detailed system investigation and research of known issues. In

OVAL

Definition

Producing OVAL Definitions

Write or Generate the

OVAL Definition

Producing OVAL System Characteristics

Collect System Data

Producing OVAL Results

Stored

Settings

Compare OVAL

Definition to

OVAL System

Characteristics

Generate

OVAL

Results

Generate

OVAL System

Characteristics

Advisory,

Policy, or

Other System

State

OVAL System

Characteristics
OVAL

Results

OVAL

Variables

OVAL

Results

Directives

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

92

Copyright © 2012, The MITRE Corporation. All rights reserved.

either case, low level system state information is encoded in the form of an assertion about a system

state.

 Reuse of Definition, Test, Object, State, and Variable 5.1.1

The OVAL Language enables content reuse through the use of globally unique IDs. When producing

OVAL Definitions, OVAL Tests, OVAL Objects, OVAL States, and OVAL Variables, existing content SHOULD

be reused when possible.

 Tracking Change 5.1.2

The version property provides the ability to track changes to OVAL Definitions, OVAL Tests, OVAL

Objects, OVAL States, and OVAL Variables. Proper usage of the version property is critical for content

sharing and reuse. When updating an OVAL Definition, OVAL Test, OVAL Object, OVAL State, or OVAL

Variable the version property MUST be incremented for each revision.

 Metadata 5.1.3

Each OVAL Definition, as defined by the oval-def:DefinitionType, includes a metadata

property. The contents of the metadata property MUST NOT impact OVAL Definition evaluation. All

information that is encoded in the metadata property SHOULD also be encoded in the OVAL

Definition’s criteria.

5.1.3.1 Authoritative References

The reference property of an OVAL Definition’s metadata property SHOULD provide an

authoritative citation for the specific system state being described by the OVAL Definition. OVAL

Definitions with a class property value of ‘vulnerability’ SHOULD include a reference to the CVE Name

for the vulnerability when one exists. OVAL Definitions with a class property value of ‘compliance’

SHOULD include a reference to the CCE Name for the configuration item when one exists. OVAL

Definitions with a class property value of ‘inventory’ SHOULD include a reference to the CPE for the

relevant operating system or application when a CPE Name exists.

5.1.3.2 Platforms and Products

The platform and product properties of an OVAL Definition’s metadata property SHOULD

provide a listing of platforms and products to which the OVAL Definition is known to apply.

 Content Integrity and Authenticity 5.1.4

Content expressed in the OVAL Definitions Model MAY be digitally signed in order to preserve content

integrity and authenticity. The OVAL Definitions Model defines six locations for including a digital

signature. Any of these locations MAY be used. See section 6.1 XML Signature Support.

5.2 Producing OVAL System Characteristics
Producing OVAL System Characteristics is the process by which detailed system state information is

collected and represented in a standard format. This information may be collected through direct

interaction with an end system by using system APIs to query the state of the system, or by gathering

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

93

Copyright © 2012, The MITRE Corporation. All rights reserved.

information from some other source of system state information, like a configuration management

database.

 System Information 5.2.1

The oval-sc:system_info property of the OVAL System Characteristics model MUST accurately

represent the system from which the data was collected. When the system data was collected from a

source other than directly from the system being described, the oval-sc:system_info type MUST

represent the original system from which the data was collected.

 Collected Objects 5.2.2

When a set of OVAL Objects is used to guide the collection of system data, the OVAL Objects that were

used MUST be recorded as objects in the oval-sc:collected_objects property of the OVAL

System Characteristics model. This section describes the process of creating an oval-sc:object in

the collection of oval-sc:collected_objects.

5.2.2.1 flag Usage

Each object listed in the oval-sc:collected_objects MUST specify the outcome of the data

collection effort by setting the flag property to the appropriate value. The valid flag values are

defined in the oval-sc:FlagEnumeration. The correct usage of the flag enumeration values in

the context of the flag property is specified in the following table.

Enumeration Value When to Use the Enumeration Value?

error This value MUST be used when an error that prevents the collection of the OVAL
Items for the OVAL Object.

The object property SHOULD include one or more messages describing the
error condition.

complete This value MUST be used when the collection process for the OVAL Object was
successful and accurately captured the complete set of matching OVAL Items.

incomplete This value MUST be used when the collection process for the OVAL Object was
successful but the complete set of matching OVAL Items is not represented by
the set of references.

The object property SHOULD include one or more messages explaining the

incomplete flag value.

does not exist This value MUST be used when no matching OVAL Items were found.

not collected This value MUST be used when no attempt was made to collect the OVAL Object.

The object property MAY include one or more messages explaining the not
collected flag value.

not applicable This value MUST be used the specified OVAL Object is not applicable to the
system under test.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

94

Copyright © 2012, The MITRE Corporation. All rights reserved.

The object property MAY include one or more messages explaining the not
applicable flag value.

5.2.2.2 variable_instance property

When an OVAL Object makes use of an OVAL Variable, either directly or indirectly, each collection of

values assigned to the OVAL Variable MUST be differentiated by incrementing the

variable_instance property once for each assigned collection of values for the OVAL Variable.

When more than one collection of values is assigned to an OVAL Variable, a given OVAL Object will

appear as a oval-sc:collected_object once for each assigned value.

5.2.2.3 Item References

Each OVAL Item that is collected as a result of collecting a given OVAL Object MUST be referenced by the

reference property of the object. A given OVAL Item MAY be referenced by one or more

objects. This situation will occur when two distinct OVAL Objects identify overlapping sets of OVAL

Items.

When the flag property has a value of ‘not collected’ or ‘not applicable’ the object MUST NOT

include any OVAL Item references.

5.2.2.4 Variable Values

Each OVAL Variable and its value used when collecting OVAL Items for an OVAL Object MUST be

recorded in the variable_value property of the object.

 Conveying System Data without OVAL Objects 5.2.3

OVAL Objects are commonly used to guide the collection of OVAL Items. However, system state

information may be collected without the use of OVAL Objects. OVAL Items MAY be collected by

searching system data stores, API calls, algorithms, or other proprietary processes. When this is done,

the OVAL System Characteristics will not contain a collected_objects section, however, it will

contain a system_data section with all of the OVAL Items collected.

 Recording System Data and OVAL Items 5.2.4

The system_data property holds a collection of OVAL Items. This section describes the process of

building an OVAL Item and the constraints that apply to OVAL Items.

5.2.4.1 Item IDs

Each OVAL Item contains a unique identifier which distinguishes it from other OVAL Items that are

represented in the collection of system_data. Item IDs MUST be unique within an OVAL System

Characteristics Model.

5.2.4.2 Unique Items

OVAL Items are differentiated by examining each OVAL Item’s name and each of the OVAL Item’s entity

names and values. Each OVAL Item MUST represent a unique system data artifact. No two OVAL Items

within an OVAL System Characteristics Model can be the same.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

95

Copyright © 2012, The MITRE Corporation. All rights reserved.

5.2.4.3 Partial Matches

A partial match is when an OVAL Item, containing some information, is reported in the OVAL System

Characteristics rather than simply not reporting the OVAL Item. Partial matches are useful for

debugging purposes when an OVAL Item does not exist on the system or is not collected due to

limitations in the OVAL Capable Product. Please note that the use of partial matches is optional.

5.2.4.4 Item Status

The valid status values, for an OVAL Item, are defined in the oval-sc:StatusEnumeration. The

correct usage of the status enumeration values in the context of the status property is specified in the

following table.

Enumeration Value When to Use the Enumeration Value?

error This value MUST be used when there is an error that prevents the collection of an
OVAL Item or any of its entities.

The OVAL Item SHOULD include one or more messages describing the error
condition.

exists This value MUST be used when an OVAL Item is successfully collected.

does not exist This value MUST be used when the OVAL Item is not found on the system being
examined.

The use of this value is optional and is only used to report a partial match. If a
partial match is not being reported, the OVAL Item MUST NOT be reported in the
OVAL System Characteristics.

The OVAL Item MAY include one or more messages describing this status value.

not collected This value MUST be used when no attempt is made collect the OVAL Item.

The use of this value is optional and is only used to report a partial match. If a
partial match is not being reported, the OVAL Item MUST NOT be reported in the
OVAL System Characteristics.

The OVAL Item SHOULD include one or more messages describing this status
value.

5.2.4.5 Item Entities

OVAL Item Entities must be added to the OVAL Item such that it aligns with the constraints specified in

the appropriate OVAL Component Model and the requirements in this section.

5.2.4.5.1 Determining Which Entities to Include

OVAL Component Models define concrete OVAL Items and their entities. All entities within an OVAL

Item are optional. When creating an OVAL Item any number of item entities MAY be included. However,

sufficient OVAL Item entities MUST be included to ensure that the OVAL Item describes only a single

system configuration item.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

96

Copyright © 2012, The MITRE Corporation. All rights reserved.

Many OVAL Items include entities that have dependencies upon other entities within the same OVAL

Item. When dependencies exist between OVAL Item entities, if an entity is included then all entities that

it depends upon MUST also be included in the OVAL Item. When using OVAL Objects to guide the

collection of system data, the entities included in the OVAL Object SHOULD be included in the OVAL

Items that it identifies.

When collecting system data an OVAL State MAY be used to determine which entities to include within

and OVAL Item. This sort of processing can be an optimization made when collecting data. For example,

if the OVAL State makes an assertion about a single entity it may not be necessary to include all other

OVAL Item entities.

5.2.4.5.2 Status

The OVAL Item Entity status conveys the outcome of attempting to collect one property of a piece of

system state information. The valid OVAL Item Entity status values are defined in the oval-

sc:StatusEnumeration. The status of an OVAL Item Entity can be independent of other OVAL Item

Entities and SHOULD NOT be propagated up to the containing OVAL Item. The following table indicates

when to use each status value.

Enumeration Value When to Use the Enumeration Value?

error This value MUST be used when there is an error that prevents the collection of
the OVAL Item Entity.

exists This value MUST be used when the OVAL Item Entity exists on the system and is
collected.

does not exist This value MUST be used when the OVAL Item Entity does not exist on the
system.

not collected This value MUST be used when no attempt is made to collect the OVAL Item
Entity.

5.2.4.5.3 Datatype

The datatype of the OVAL Item Entity describes how the value of the OVAL Item Entity should be

interpreted. The valid datatype values for an OVAL Item Entity are listed in the

oval:DatatypeEnumeration and restricted as needed in OVAL Component Models. When

assigning a datatype to an OVAL Item Entity, there are two cases to consider:

1. The datatype is fixed to a specific datatype value. In this case, the OVAL Item Entity MUST

always use the specified datatype value.

2. The datatype can be one of several datatype values. In this case, the datatype value that

most appropriately describes the value of the OVAL Item Entity SHOULD be used. If an OVAL

Item Entity value is not present, the datatype value must be set to the default datatype value

specified in corresponding OVAL Component Model.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

97

Copyright © 2012, The MITRE Corporation. All rights reserved.

5.2.4.5.4 Value

The final aspect of an OVAL Item Entity is its value. An OVAL Item Entity may contain simple character

data or complex structured data as specified in the corresponding OVAL Component Model. All OVAL

Item Entity values must conform to the constraints defined in the oval-

sc:DatatypeEnumeration.

 Content Integrity and Authenticity 5.2.5

Content expressed in the OVAL System Characteristics Model MAY be digitally signed in order to

preserve content integrity and authenticity. See Section 6.1 on XML Signature Support.

5.3 Producing OVAL Results
Producing OVAL Results is the process by which detailed system state information is evaluated against

the expected state of a system and represented in a standardized format. This standardized format

conveys the results of the evaluation which can indicate the presence of a vulnerability, compliance to a

policy, installation of software, or even the presence of malware artifacts. Additionally, the results can

be consumed by other tools where they can be interpreted and used to inform remediation of

discovered issues.

 Definition Evaluation 5.3.1

OVAL Definition Evaluation is the process examining the characteristics of a system and applying one or

more logical statements about those characteristics to determine an overall result for the system state

that the OVAL Definition describes. Each OVAL Definition has zero or one logical criteria

components, which are combined using logical operators, such as ‘AND’ and ‘OR’. The overall result of

evaluating an OVAL Definition is determined by evaluating its criteria component. This process is

described in detail in the following section.

5.3.1.1 Evaluating a Deprecated OVAL Definition

When evaluating a deprecated OVAL Definition, that does not have a criteria construct, the OVAL

Definition MUST evaluate to ‘not evaluated’. If a deprecated OVAL Definition contains a criteria

construct, the OVAL Definition SHOULD evaluate as if it were not deprecated. However, the OVAL

Definition MAY evaluate to ‘not evaluted’.

5.3.1.2 Criteria Evaluation

A criteria component of an OVAL Definition combines one or more logical statements in order to

determine a result value. A criteria can be made up of other criteria, criterion, or

extend_definitions, along with an operator property that specifies how to logically combine

the specified logical statements. For more information on how to combine the individual results of the

logical statements specified within a criteria, see Section 5.3.6.2. The result value of the criteria is

determined by first evaluating the operator property to combine the logical statements and then

evaluating the negate property. See Section 5.3.1.5 for additional information on how to negate the

result of the criteria.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

98

Copyright © 2012, The MITRE Corporation. All rights reserved.

5.3.1.2.1 applicability_check

If a value for the applicability_check property is specified on the criteria construct, in an

OVAL Definition, the applicability_check property and value MUST be replicated on the

criteria construct in the OVAL Results.

5.3.1.3 Criterion Evaluation

The result of a criterion construct is the result of the OVAL Test that it references, after the

negate property has been applied. See Section 5.3.1.5 Negate Evaluation for additional information on

how to negate the result of an OVAL Test.

The variable_instance property of the criterion is carried over from the

variable_instance value of the referenced OVAL Test.

5.3.1.3.1 applicability_check

If a value for the applicability_check property is specified on the criterion construct, in an

OVAL Definition, the applicability_check property and value MUST be replicated on the

criterion construct in the OVAL Results.

5.3.1.4 Extend Definition Evaluation

The result of an extend_definition construct is the result of the OVAL Definition, that it

references, after the negate property has been applied. See Section 5.3.1.5 Negate Evaluation for

additional information on how to negate the result of an OVAL Definition.

The variable_instance property of the extend_definition is carried over from the

variable_instance value of the referenced OVAL Definition.

5.3.1.4.1 applicability_check

If a value for the applicability_check property is specified on the extend_definition

construct, in an OVAL Definition, the applicability_check property and value MUST be

replicated on the extend_definition construct in the OVAL Results.

5.3.1.5 Negate Evaluation

When the negate property is ‘true’, the final result of a construct MUST be the logical complement of

its result value. That is, for any construct that evaluates to ‘true’, the final result would become ‘false’,

and vice versa. The negate property does not apply to non-Boolean result values. If a non-Boolean

result value is encountered, the final result MUST be the non-Boolean result value. If the negate

property is set to ‘false’, the final result of a construct will be its original result value.

5.3.1.6 Variable Instance

The value of the variable_instance property is derived from the variable_instance values

of the OVAL Definitions and OVAL Tests that are referenced within the OVAL Definition’s criteria.

When an OVAL Definition references another OVAL Definition or an OVAL Test that makes use of an

OVAL Variable, each collection of values assigned to the OVAL Variable MUST be differentiated by

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

99

Copyright © 2012, The MITRE Corporation. All rights reserved.

incrementing the variable_instance property. The variable_instance value is incremented

once for each assigned collection of values for the OVAL Variable. When more than one collection of

values is assigned to an OVAL Variable, an OVAL Definition will appear in the definitions section

once for each assigned collection of values.

 Test Evaluation 5.3.2

An OVAL Test is the standardized representation of an assertion about the state of a system. An OVAL

Test contains references to an OVAL Object that specifies which system data to collect and zero or more

OVAL States that specify the expected state of the collected system data. OVAL Test Evaluation is the

process of comparing the collected set of system data, as OVAL Items, to zero or more OVAL States.

The result of the OVAL Test Evaluation is then determined by combining the results of the following

three test evaluation parameters:

1. Existence Check Evaluation – The process of determining whether or not the number of OVAL
Items, that match the specified OVAL Object, satisfy the requirements specified by the

check_existence property.

2. Check Evaluation – The process of determining whether or not the number of collected OVAL
Items, specified by the check property, match the specified OVAL States.

3. State Operator Evaluation – The process of combining the individual results, from the
comparison of an OVAL Item to the specified OVAL States, according to the state_operator
property.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

100

Copyright © 2012, The MITRE Corporation. All rights reserved.

5.3.2.1 Existence Check Evaluation

Existence Check Evaluation is the process of determining whether or not the number of OVAL Items,
that match the specified OVAL Object, satisfy the requirements specified by the check_existence
property. The check_existence property specifies how many OVAL Items that match the specified
OVAL Object must exist on the system in order for the OVAL Test to evaluate to ‘true’. To determine if
the check_existence property is satisfied, the status of each OVAL Item collected by the OVAL
Object must be examined.

The following tables describe how each ExistenceEnumeration value affects the result of the
Existence Check Evaluation. The far left column identifies the ExistenceEnumeration value in
question, and the middle column specifies the different combinations of individual OVAL Item status
values that may be found. The last column specifies the final result of the Existence Check Evaluation
according to the combination of individual OVAL Item status values.

Enumeration Value Number of Individual Item Status Values Existence Result

all_exist exists does not exist error not collected

N
o

No

OVAL Object

Evaluation
Yes

N
o

Is the

check_existence

property

satisfied?

OVAL Test False

OVAL State

Evaluation

Collected

OVAL Items

Collected

OVAL Items

True

For Each OVAL Item

Collected

OVAL Item

Results

from each

OVAL State

Evaluation

Combine the

results according

to the

state_operator

Results from

comparing

collected

OVAL Items

against OVAL

States

Y
e

s

Is the check

property

satisfied?

False

True

Result from

OVAL State

Evaluation

For Each OVAL State

Result after

combining

according to

the

state_operator

Are there any

OVAL States?

Y
e

s

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

101

Copyright © 2012, The MITRE Corporation. All rights reserved.

1+ 0 0 0 true

0 0 0 0 false

0+ 1+ 0+ 0+ false

0+ 0 1+ 0+ error

0+ 0 0 1+ unknown

-- -- -- -- not evaluated

-- -- -- -- not applicable

Enumeration Value Number of Individual Item Status Values Existence Result

any_exist exists does not exist error not collected

0+ 0+ 0 0+ true

1+ 0+ 1+ 0+ true

-- -- -- -- false

0 0+ 1+ 0+ error

-- -- -- -- unknown

-- -- -- -- not evaluated

-- -- -- -- not applicable

Enumeration Value Number of Individual Item Status Values Existence Result

at_least_one_exists exists does not exist error not collected

1+ 0+ 0+ 0+ true

0 1+ 0 0 false

0 0+ 1+ 0+ error

0 0+ 0 1+ unknown

-- -- -- -- not evaluated

-- -- -- -- not applicable

Enumeration Value Number of Individual Item Status Values Existence Result

none_exist exists does not exist error not collected

0 0+ 0 0 true

1+ 0+ 0+ 0+ false

0 0+ 1+ 0+ error

0 0+ 0 1+ unknown

-- -- -- -- not evaluated

-- -- -- -- not applicable

Enumeration Value Number of Individual Item Status Values Existence Result

only_one_exists exists does not exist error not collected

1 0+ 0 0 true

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

102

Copyright © 2012, The MITRE Corporation. All rights reserved.

2+ 0+ 0+ 0+ false

0 0+ 0 0 false

0,1 0+ 1+ 0+ error

0,1 0+ 0 1+ unknown

-- -- -- -- not evaluated

-- -- -- -- not applicable

5.3.2.2 Check Evaluation

Check Evaluation is the process of determining whether or not the number of collected OVAL Items,
specified by the check property, match the specified OVAL States. The check property specifies how
many of the collected OVAL Items must match the specified OVAL States in order for the OVAL Test to
evaluate to ‘true’. For additional information on how to determine if the check property is satisfied, see
Section 5.3.6.1 Check Enumeration Evaluation.

5.3.2.3 State Operator Evaluation

State Operator Evaluation is the process of combining the individual results, from the comparison of an

OVAL Item to the specified OVAL States, according to the state_operator property, to produce a

result for the OVAL Test. For additional information on how to determine the final result using the

state_operator property, see Section 5.3.6.2 Operator Enumeration Evaluation.

5.3.2.4 Determining the Final OVAL Test Evaluation Result

While the final result of the OVAL Test Evaluation is the combination of the results from the three

evaluations (Existence Check Evaluation, Check Evaluation, and State Operator Evaluation), how the

result is calculated will vary depending upon if the optional collected object section is present in the

OVAL System Characteristics. However, in either case, if the result of the Existence Check Evaluation is

‘false’, the Check and State Operator Evaluations can be ignored and the final result of the OVAL Test

will be ‘false’.

5.3.2.4.1 Final OVAL Test Evaluation Result without a Collected Objects Section

When the Collected Objects section is not present in the OVAL System Characteristics, all OVAL Items

present in the OVAL System Characteristics must be examined. Each OVAL Item MUST be examined to

determine which match the OVAL Object according to Section 5.3.3.1 Matching an OVAL Object to an

OVAL Item and Section 5.3.3.2 Matching an OVAL Object Entity to an OVAL Item Entity. Once the set of

matching OVAL Items is determined, they can undergo the three different evaluations that make up

OVAL Test Evaluation.

5.3.2.4.2 Final OVAL Test Evaluation Result with a Collected Objects Section

When the Collected Objects section is present in the OVAL System Characteristics the flag value of an

OVAL Object, in the Collected Objects section, must be examined before the Existence Check Evaluation

is performed.

If the OVAL Object, referenced by an OVAL Test, cannot be found in the Collected Objects section, the

final result of the OVAL Test MUST be ‘unknown’.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

103

Copyright © 2012, The MITRE Corporation. All rights reserved.

Otherwise, if the OVAL Object, referenced by an OVAL Test, is found, the following guidelines must be

followed when determining the final result of an OVAL Test.

 If the flag value is ‘error’, the final result of the OVAL Test MUST be ‘error’.

 If the flag value is ‘not collected’, the final result of the OVAL Test MUST be ‘unknown’.

 If the flag value is ‘not applicable’, the final result of the OVAL Test MUST be ‘not applicable’.

 If the flag value is ‘does not exist’, the final result is determined solely by performing the Check

Existence Evaluation.

 If the flag value is ‘complete’, the final result is determined by first performing the Check

Existence Evaluation followed by the Check Evaluation and State Operator Evaluation.

 If the flag value is ‘incomplete’, the final result is determined as follows:

o If the check_existence property has a value of ‘none_exist’ and one or more OVAL

Items, referenced by the OVAL Object, have a status of ‘exists’, the final result of the

OVAL Test MUST be ‘false’.

o If the check_existence property has a value of ‘only one exists’ and more than one

OVAL Item, referenced by the OVAL Object, has a status of ‘exists’, the final result of the

OVAL Test MUST be ‘false’.

o If the result of the Existence Check Evaluation is true, the following special cases during

the Check Evaluation MUST be considered:

 If the Check Evaluation evaluates to ‘false’, the final result of the OVAL Test

MUST be ‘false’.

 If the check property has a value of ‘at least one satisfies’ and the check

evaluation evaluates to ‘true’, the final result of the OVAL Test MUST be ‘true’.

o Otherwise, the final result of the OVAL Test MUST be ‘unknown’.

Enumeration Value Test Result

error error

complete depends on check_existence and check attributes

incomplete depends on check_existence and check attributes

does not exist depends on check_existence and check attributes

not collected unknown

not applicable not applicable

5.3.2.5 Variable Instance

When an OVAL Test makes use of an OVAL Variable, either directly or indirectly, OVAL Test is evaluated

once for each collection of values assigned to the OVAL Variable. Each evaluation result for the OVAL

Tests MUST be differentiated by incrementing the variable_instance property once for each

assigned collection of values for the OVAL Variable. When more than one collection of values is assigned

to an OVAL Variable, an OVAL Test will appear in the tests section once for each assigned collection of

values.

 OVAL Object Evaluation 5.3.3

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

104

Copyright © 2012, The MITRE Corporation. All rights reserved.

At the highest level, OVAL Object Evaluation is the process of collecting OVAL Items based on the

constraints specified by the OVAL Object Entities and OVAL Behaviors, if present, in an OVAL Object. An

OVAL Object contains the minimal number of OVAL Object Entities needed to uniquely identify the

system state information that makes up the corresponding OVAL Item. The methodology used to collect

the system state information for the OVAL Items is strictly an implementation detail. Regardless of the

chosen methodology, the same OVAL Items MUST be collected on a system for a given OVAL Object

except when the flag for the collected OVAL Object has a value of ‘incomplete’.

5.3.3.1 Matching an OVAL Object to an OVAL Item

An OVAL Item matches an OVAL Object only if every OVAL Object Entity, as guided by any OVAL

Behaviors, matches the corresponding OVAL Item Entity in the OVAL Item under consideration.

5.3.3.2 Matching an OVAL Object Entity to an OVAL Item Entity

An OVAL Object Entity matches an OVAL Item Entity only if the value of the OVAL Item Entity matches

the value of the OVAL Object Entity in the context of the specified datatype and operation. See Section

5.3.6.3 for additional information regarding the allowable datatypes, operations, and how they should

be interpreted.

5.3.3.3 OVAL Object Entity Evaluation

OVAL Object Entity Evaluation is the process of searching for system state information that matches the

values of an OVAL Object Entity in the context of the specified datatype and operation. This process is

further defined below.

5.3.3.3.1 Datatype and Operation Evaluation

The datatype and operation property associated with an OVAL Object Entity specifies what system state

information should be collected from the system in the form of an OVAL Item. When comparing a value

specified in the OVAL Object Entity against system state information, the operation must be performed

in the context of the specified datatype; the same operation for two different datatypes could yield

different results. See Section 5.3.6.3 for additional information on how to apply an operation in the

context of a particular datatype.

5.3.3.3.2 nil Object Entities

For many OVAL Object Entities, there are situations in which the OVAL Object Entity does not need to be

considered in the evaluation of the OVAL Object. When the nil property is set to ‘true’, it indicates that

the OVAL Object Entity must not be considered during OVAL Object Evaluation and must not be

collected. For more information about a particular OVAL Object Entity and how the nil property affects

it, see the appropriate OVAL Component Model.

5.3.3.3.3 Referencing an OVAL Variable

An OVAL Variable may be referenced from an Object Entity in order to specify multiple values or to use a

value that was collected from some other source. When the var_ref property is specified, the

var_check property SHOULD also be specified. See Section 5.3.6.4 Variable Check Evaluation for more

information on how to evaluate an OVAL Object Entity that references a variable.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

105

Copyright © 2012, The MITRE Corporation. All rights reserved.

In addition to the OVAL Item Entity value matching the values specified in the OVAL Variable according

to the var_check property, the flag associated with the OVAL Variable must also be considered. The

OVAL Variable flag indicates the outcome of the collection of values for the OVAL Variable. It is

important to consider this outcome because it may affect the ability of an OVAL Object Entity to

successfully match the corresponding OVAL Item Entity. Additionally, this flag will also impact the

collected object flag.

The following table describes what flags are valid given the flag value of the OVAL Variable referenced

by an OVAL Object Entity.

Flag of OVAL Variable Valid OVAL Object Flags

error ‘error’

complete ‘error’

 ‘complete’

 ‘incomplete’

 ‘does not exist’

 ‘not collected’

 ‘not applicable’

incomplete ‘error’

 ‘incomplete’

 ‘does not exist’

 ‘not collected’

 ‘not applicable’

does not exist ‘does not exist’

not collected ‘does not exist’

not applicable ‘does not exist’

For additional information on when each flag value MUST be used, see Section 5.2.2.1.

5.3.3.3.4 Collected Object Flag Evaluation

However, when there are multiple OVAL Object Entities in an OVAL Object the flag values for each OVAL

Object Entity must be considered when determining which flag values are appropriate. The following

table describes how multiple flag values influence the collected object flag of the OVAL Object

referencing the variable.

Resulting Flag Number of OVAL Components with the Specified Flag

error complete incomplete does not exist not collected not applicable

error 1+ 0+ 0+ 0+ 0+ 0+

complete 0 1+ 0 0 0 0

incomplete 0 0+ 1+ 0 0 0

does not exist 0 0+ 0+ 1+ 0 0

not collected 0 0+ 0+ 0+ 1+ 0

not applicable 0 0+ 0+ 0+ 0+ 1+

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

106

Copyright © 2012, The MITRE Corporation. All rights reserved.

5.3.3.4 Set Evaluation

The set construct provides the ability to combine the collected OVAL Items of one or two OVAL Objects

using the set operators defined in the SetOperatorEnumeration. See Section 4.3.49

SetOperatorEnumeration for more information about the allowed set operators.

The processing of a set MUST be done in the following manner:

1. Identify the OVAL Objects that are part of the set by examining the object_references

associated with the set. Each object_reference will refer to an OVAL Object that

describes a unique set of collected OVAL Items.

2. For every defined filter (See Section 5.3.3.4.2 filter), apply the associated filter to

each OVAL Item.

3. Apply the set operator to all OVAL Items remaining in the set.

4. The resulting OVAL Items will be the unique set of OVAL Items referenced by the OVAL Object

that contains the set.

5.3.3.4.1 Set Operator

Set operations are used to combine multiple sets of different OVAL Items, as identified by the

object_reference and limited by any filter, into a single unique set of OVAL Items. The

different operators that guide process are in the SetOperatorEnumeration. For each operator, if

only a single object_reference has been supplied then the resulting set is simply the complete set

of OVAL Items identified by the referenced OVAL Object after any included filters have been applied.

The tables below explain how different flags are combined for each set_operator to return a new

flag. These tables are needed when computing the flag for collected objects that represent object sets in

an OVAL Definition. The top row identifies the flag associated with the first set or object reference. The

left column identifies the flag associated with the second set or object reference. The matrix inside the

table represents the resulting flag when the given set_operator is applied.

Table 5-1 set_operator = COMPLEMENT

Enumeration
Value

OVAL Object 1 Flag

 error complete incomplete does not exist not collected not

applicable

error error error error does not exist error error

complete error complete incomplete does not exist not collected error

incomplete error error error does not exist not collected error

does not exist error complete incomplete does not exist not collected error

not collected error not collected not collected does not exist not collected error

not applicable error error error error error error

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

107

Copyright © 2012, The MITRE Corporation. All rights reserved.

Table 5-2 set_operator = INTERSECTION

Enumeration
Value

OVAL Object 1 Flag

 error complete incomplete does not exist not collected not

applicable

error error error error does not exist error error

complete error complete incomplete does not exist not collected complete

incomplete error incomplete incomplete does not exist not collected incomplete

does not exist does
not
exist

does not
exist

does not
exist

does not exist does not
exist

does not
exist

not collected error not collected not collected does not exist not collected not collected

not applicable error complete incomplete does not exist not collected not
applicable

Table 5-3 set_operator = UNION

Enumeration
Value

OVAL Object 1 Flag

 error complete incomplete does not exist not collected not

applicable

error error error error error error error

complete error complete incomplete complete incomplete complete

incomplete error incomplete incomplete incomplete incomplete incomplete

does not exist error complete incomplete does not exist incomplete does not
exist

not collected error incomplete incomplete incomplete not collected not collected

not applicable error complete incomplete does not exist not collected not
applicable

5.3.3.4.2 filter

The filter construct provides a way to control the OVAL Items that are included a set. See Section

5.3.3.5 OVAL Filter Evaluation for additional information.

5.3.3.4.3 object_reference

When evaluating an object_reference, an error MUST be reported it the OVAL Object identifier is

invalid, the referenced OVAL Object does not exist, or the referenced OVAL Object does not align with

the OVAL Object that is referring to it.

5.3.3.5 OVAL Filter Evaluation

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

108

Copyright © 2012, The MITRE Corporation. All rights reserved.

An OVAL Filter is a mechanism that provides the capability to either include or exclude OVAL Items

based on their system state information. This is done through the referencing of an OVAL State that

specifies the requirements for a matching OVAL Item and the action property that states whether or

not the matching OVAL Items will be included or excluded.

When evaluating an OVAL Filter, an error MUST be reported if the OVAL State identifier is not legal, the

referenced OVAL State does not exist, or the referenced OVAL State does not align with the OVAL Object

where it is used.

The action property specifies whether or not the matching OVAL Items will be included or excluded.

The action property enumeration values are defined in Section 4.3.46 ArithmeticEnumeration.

5.3.3.5.1 Applying Multiple Filters

When multiple OVAL Filters are specified, they MUST be evaluated sequentially from first to last to the

collection of OVAL Items under consideration.

5.3.3.6 OVAL Object Filter

When applying a filter to OVAL Objects, every collected OVAL Item is compared to the OVAL State

referenced by the OVAL Filter. If the collected OVAL Items match the OVAL State they are included or

excluded based on the action property. The final set of collected OVAL Items is the set of collected

OVAL Items after each OVAL Filter is evaluated. See Section 5.3.3.5 OVAL Filer Evaluation for additional

information.

 OVAL State Evaluation 5.3.4

The OVAL State is the standardized representation for expressing an expected machine state. In the

OVAL State each OVAL State Entity expresses the expected value(s) for a single piece of configuration

information. OVAL State Evaluation is the process of comparing a specified OVAL State against a

collected OVAL Item on the system. OVAL State Evaluation can be broken up into two distinct parts:

1. State Entity Evaluation – The process of determining whether or not an OVAL Item Entity, in a
collected OVAL Item, matches the corresponding OVAL State Entity specified in an OVAL State.

2. State Operator Evaluation – The process of combining the individual results, from the
comparison of an OVAL Item Entity against the specified OVAL State Entity, according to the
operator property.

The following diagram describes OVAL State Evaluation.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

109

Copyright © 2012, The MITRE Corporation. All rights reserved.

5.3.4.1 OVAL State Entity Evaluation

OVAL State Entity Evaluation is the process of comparing a specified OVAL State Entity against the

corresponding collected OVAL Item Entities. This comparison must be done in the context of the

datatype and operation, whether or not an OVAL Variable is referenced, and whether or not there are

multiple occurrences of the corresponding OVAL Item Entity in the collected OVAL Item.

5.3.4.1.1 Datatype and Operation Evaluation

The datatype and operation property associated with an OVAL State Entity specifies how the collected

OVAL Item Entity compares to the value(s) specified in the OVAL State Entity. When comparing a value

specified in the OVAL State Entity against a collected OVAL Item Entity, the operation must be

performed in the context of the specified datatype. See Section 5.3.3.3.1 Datatype and Operation

Evaluation for additional information on how an operation is applied in the context of a particular

datatype.

5.3.4.1.2 var_check Evaluation

An OVAL Variable can be referenced from an OVAL State Entity to specify multiple values that the

corresponding OVAL Item Entities will be compared against or to utilize a value that was collected from

some other source. For information on how to evaluate an OVAL State Entity that references an OVAL

Variable, see Section 5.3.6.4 Variable Check Evaluation.

5.3.4.1.3 entity_check Evaluation

An OVAL Item may contain multiple occurrences of an OVAL Item Entity to represent that the OVAL Item

has multiple values for that particular OVAL Item Entity. The entity_check property specifies how

many occurrences of an OVAL Item Entity MUST match the OVAL State Entity, as defined in Section

OVAL State
Collected

OVAL Item

For Each OVAL State Entity

Results

from each

OVAL State

Entity

Evaluation

Combine the

results according

to the

state_operator

Result from

OVAL State

Evaluation

OVAL State

Entity

Evaluation

Final Result

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

110

Copyright © 2012, The MITRE Corporation. All rights reserved.

5.3.4.1 OVAL State Entity Evaluation, in order to evaluate to ‘true’. The valid values for the

entity_check property are defined by the CheckEnumeration. See Section 5.3.6.1 Check

Enumeration Evaluation for more information about how to apply the property.

5.3.4.1.4 Determining the Final Result of an OVAL State Entity Evaluation

The final result of an OVAL State Entity Evaluation is determined by first comparing the value specified in

the OVAL State Entity with each occurrence of a corresponding OVAL Item Entity, in an OVAL Item, in the

context of the specified datatype and operation as defined in Section 5.3.3.3.1 Datatype and

Operation Evaluation. The results of the comparisons are evaluated against the specified

entity_check property according to Section 5.3.6.1 Check Enumeration Evaluation. This will be the

final result of the OVAL State Entity Evaluation unless an OVAL Variable was also referenced.

If an OVAL Variable was referenced, the above procedure must be performed for each value in the OVAL

Variable. The final result must then be computed by examining the var_check property and the

individual results for each OVAL Variable value comparison. See Section 5.3.6.4 Variable Check

Evaluation.

5.3.4.2 Operator Evaluation

Once the OVAL State Entity Evaluation is complete for every OVAL State Entity, the individual results

from each evaluation MUST be combined according to the operator property specified on the OVAL

State. The combined result will be the final result of the OVAL State Evaluation. See Section 5.3.6.2

Operator Enumeration Evaluation for more information on applying the operator to the individual

results of the evaluations.

 OVAL Variable Evaluation 5.3.5

OVAL Variable Evaluation is the process of retrieving a collection of values from sources both local and

external to OVAL Definitions as well as manipulating those values through the evaluation of OVAL

Functions. OVAL Variables can be used in OVAL Definitions to specify multiple values, manipulate values,

retrieve values at execution time, and create generic and reusable content.

5.3.5.1 Constant Variable

A constant_variable is a locally defined collection of one or more values that are specified prior

to evaluation time.

5.3.5.1.1 Determining the Flag Value

A constant_variable is only capable of having a flag value of ‘error’, ‘complete’, or ‘not collected’.

The flag value of ‘does not exist’ is not used for the evaluation of a constant_variable because a

constant variable is required to contain at least one value. The following table outlines when a constant

variable will evaluate to each of the flag values.

FlagEnumeration
Value

Description

error This flag value must be used when one or more values do not conform to the

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

111

Copyright © 2012, The MITRE Corporation. All rights reserved.

specified datatype as defined in the oval:DatatypeEnumeration.

complete This flag value must be used when all values conform to the specified datatype and
the collection of constant variables is supported in the OVAL-capable product.

incomplete -

does not exist -

not collected -

not applicable -

5.3.5.2 External Variable

An external_variable is a locally declared, externally defined, collection of one or more values.

The values referenced by an external_variable are collected from the external source at run-

time.

5.3.5.2.1 Validating External Variable Values

The OVAL Language provides the PossibleValueType and PossibleRestriction constructs

as a mechanism to validate input coming from sources external to the OVAL Definitions.

5.3.5.2.1.1 Possible Restriction

The possible_restriction construct specifies one or more restrictions on the values of an

external variable. When more than one restriction is used the individual results of each comparison

between the restriction and the external variable value must be combined using the logical AND

operator. See Section 5.3.6.2 Operator Enumeration Evaluation for more information on how to

combine the individual results using the AND operator. The final result, after combining the individual

results, will be the result of the possible_restriction construct.

5.3.5.2.1.1.1 Restriction

Each restriction allows for the specification of an operation and a value that will be compared to a

supplied value for the external_variable. The result of this comparison will be used in the

computation of the final result of the possible_restriction construct. See Section 5.3.5.2.1.3 for

additional information on how to determine the result of the comparison between the specified value

and the external variable value using the specified operation in the context of the datatype specified on

the external_variable.

5.3.5.2.1.2 Possible Value

The possible_value construct specifies a permitted external variable value. The specified value and

the external variable value must be compared as string values using the equals operation. See Section

5.3.5.2.1.3 for additional information on how to determine the result of the comparison. The result of

this comparison will be used in determining the final result of validating an external variable value.

5.3.5.2.1.3 Determining the Final Result of Validating an External Variable Value

The final result of validating an external variable value is determined by combining every

possible_restriction and possible_value constructs using the logical ‘OR’ operator. See

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

112

Copyright © 2012, The MITRE Corporation. All rights reserved.

Section 5.3.9.2 Operator Enumeration Evaluation for more information on how to combine the

individual results using the ‘OR’ operator.

5.3.5.2.2 Determining the Flag Value

An external variable is only capable of returning a flag value of ‘error’, ‘complete’, ‘does not exist’, or ‘not

collected’. The following table outlines when an external variable will evaluate to each of the flag values.

FlagEnumeration
Value

Description

error This flag value must be used when one or more values do not conform to the

specified datatype as defined in the oval:DatatypeEnumeration.
This flag value must be used when there was an error collecting the values from
the external source.

This flag value must be used when there is a value, collected from the external
source, that does not conform to the restrictions specified by the
possible_value and possible_restriction constructs or if there is

an error processing the possible_value and possible_restriction
constructs.

This flag value must be used when the final result of validating the external
variable values is not ‘true’.

This flag must be used when the external source for the variable cannot be
found.

complete This flag value must be used when the final result of validating every external
variable value is ‘true’ and conforms to the specified datatype.

incomplete -

does not exist -

not collected -

not applicable -

5.3.5.3 Local Variable

A local_variable is a locally defined collection of one or more values that may be composed of

values from other sources collected at evaluation time.

5.3.5.3.1 OVAL Function Evaluation

An OVAL Function is a construct, in the OVAL Language, that takes one or more collections of values and

manipulates them in some defined way. The result of evaluating an OVAL Function will be zero or more

values.

5.3.5.3.1.1 Nested Functions

Due to the recursive nature of the ComponentGroup construct, OVAL Functions can be nested within

one another. In this case, a depth-first approach is taken to processing OVAL Functions. As a result, the

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

113

Copyright © 2012, The MITRE Corporation. All rights reserved.

inner most OVAL Functions are evaluated first, and then the resulting values are used as input to the

outer OVAL Function and so on.

5.3.5.3.1.2 Evaluating OVAL Functions with Sub-components with Multiple Values

When one or more of the specified sub-components resolve to multiple values, the function will be

applied to the Cartesian product13 of the values, in the sub-components, and will result in a collection of

values.

5.3.5.3.1.3 Casting the Input of OVAL Functions

OVAL Functions are designed to work on values with specific datatypes. If an input value is encountered

that does not align with required datatypes an attempt must be made to cast the input value(s) to the

required datatype before evaluating the OVAL Function. If the input value cannot be cast to the required

datatype the flag value, of the OVAL Function, MUST be set to ‘error’.

5.3.5.3.1.4 Determining the Flag Value

When determining the flag value of an OVAL Function, the combined flag value of the sub-components

must be computed in order to determine if the evaluation of the OVAL Function should continue. The

following tables outline how to combine the sub-component flag values.

Resulting
Flag

Number of OVAL Components with the Specified Flag

error complete incomplete does not
exist

not
collected

not
applicable

error 1+ 0+ 0+ 0+ 0+ 0+

complete 0 1+ 0 0 0 0

incomplete 0 0+ 1+ 0 0 0

does not
exist

0 0+ 0+ 1+ 0 0

not
collected

0 0+ 0+ 0+ 1+ 0

not
applicable

0 0+ 0+ 0+ 0+ 1+

13
 Cartesian Product http://en.wikipedia.org/wiki/Cartesian_product

Notation Description

X x individual OVAL Component flag values are…

x, y x or y individual OVAL Component flag values are…

x+ x or more individual OVAL Component flag values are…

http://en.wikipedia.org/wiki/Cartesian_product

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

114

Copyright © 2012, The MITRE Corporation. All rights reserved.

Once the flag values of the sub-components have been combined the evaluation of an OVAL Function

must only continue if the flag value is ‘complete’. All other flag values mean that the evaluation of the

OVAL Function stops and the flag of the OVAL Function MUST be ‘error’. The following table outlines

how to determine the flag value of an OVAL Function.

FlagEnumeration
Value

Description

error This flag value must be used if the combined sub-component flag is a value
other than ‘complete’.

This flag value must be used if an error occurred during the computation of an
OVAL Function.

This flag value must be used if an attempt to cast an input value to a required
datatype failed.

complete This flag value must be used if the combined sub-component flag is complete
and the evaluation of the OVAL Function completes successfully.

incomplete -

does not exist -

not collected -

not applicable -

5.3.5.3.2 OVAL Components

A component is a reference to another part of the content that allows further evaluation or

manipulation of the value or values specified by the referral.

5.3.5.3.2.1 Literal Component

A literal_component is a component that allows the specification of a literal value. The value can

be of any supported datatype as specified in the oval:DatatypeEnumeration. The default

datatype is ‘string’.

5.3.5.3.2.1.1 Determining the Flag Value

A literal_component is only capable of evaluating to a flag value of ‘error’ or ‘complete’. The

following table outlines when a literal_component will evaluate to each of the flag values.

FlagEnumeration
Value

Description

error This flag value must be used when the value does not conform to the specified
datatype as defined in the oval:DatatypeEnumeration.

complete This flag value must be used when the value conforms to the specified datatype

as defined in the oval:DatatypeEnumeration.

incomplete -

does not exist -

not collected -

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

115

Copyright © 2012, The MITRE Corporation. All rights reserved.

not applicable -

5.3.5.3.2.2 Object Component

An object component is a component that resolves to the value(s) of OVAL Item Entities or OVAL Fields,

in OVAL Items, that were collected by an OVAL Object. The property, object_ref, must reference an

existing OVAL Object.

The value that is used by the object component must be specified using the item_field property of

the object component. This indicates which entity should be used as the value for the component. In the

case that the OVAL Object collects multiple OVAL Items as part of its evaluation, this can resolve to a

collection of values. In the case that an OVAL Item Entity has a datatype of ‘record’, the

record_field property can be used to indicate which field to use for the component.

5.3.5.3.2.2.1 Determining the Flag Value

An object_component is only capable of evaluating to a flag value of ‘error’, ‘complete’,

‘incomplete’, or ‘not collected’. The following table outlines when an object_component will

evaluate to each of the flag values.

FlagEnumeration
Value

Description

error This flag value must be used when the value does not conform to the specified

datatype as defined in the oval:DatatypeEnumeration.

This flag value must be used if the OVAL Object does not return any OVAL Items.

This flag value must be used if an entity is not found with a name that matches
the value of the item_field property.

This flag value must be used if a field is not found with a name that matches the
value of the record_field property.

complete This flag value must be used when every value conforms to the specified

datatype as defined in the oval:DatatypeEnumeration and when the
flag of the referenced OVAL Object is ‘complete’.

incomplete This flag value must be used when every value conforms to the specified
datatype as defined in the oval:DatatypeEnumeration and when the
flag of the referenced OVAL Object is ‘incomplete’.

does not exist -

not collected This flag value must be used when the OVAL-capable product does not support
the collection of object_components.

not applicable -

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

116

Copyright © 2012, The MITRE Corporation. All rights reserved.

5.3.5.3.2.3 Variable Component Flag Value

A variable_component is only capable of evaluating to a flag value of ‘error’, ‘complete’,

‘incomplete’, or ‘not collected’. The following table outlines when a variable_component will

evaluate to each of the flag values.

FlagEnumeration
Value

Description

error This flag value must be used when the flag value of the referenced OVAL
Variable is ‘error’.

This flag value must be used when the referenced OVAL Variable cannot be
found.

complete This flag value must be used when the flag value of the referenced OVAL
Variable is ‘complete’.

incomplete This flag value must be used when the flag value of the referenced OVAL
Variable is ‘incomplete’.

does not exist This flag value must be used when the flag value of the referenced OVAL
Variable is ‘does not exist’.

not collected This flag value must be used when the OVAL-capable product does not support

the collection of variable_components.

not applicable -

5.3.5.3.3 Determining the Flag Value

A local_variable can contain an OVAL Function or an OVAL Component. As a result, the flag value

must consider both the flag of the OVAL Function or OVAL Component along with the additional

conditions from being an OVAL Variable. The following table describes when each flag value must be

used.

FlagEnumeration
Value

Description

error This flag value must be used when one or more values do not conform to the

specified datatype as defined in the oval:DatatypeEnumeration.
This flag value must be used when there was an error collecting the values from
the external source.

This flag value must be used when the specified datatype is ‘record’.

This flag value must be used when the flag value of the specified OVAL Function
or OVAL Component is ‘error’.

complete This flag value must be used when the flag value of the specified OVAL Function
or OVAL Component is ‘complete’ and every value conforms to the specified
datatype.

incomplete -

does not exist This flag value must be used when there are no values.

not collected This flag value must be used when the OVAL-capable product does not support

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

117

Copyright © 2012, The MITRE Corporation. All rights reserved.

the collection of local_variables.

not applicable -

 Common Evaluation Concepts 5.3.6

This section describes a set of evaluation concepts that apply to several aspects of producing OVAL

Content.

5.3.6.1 Check Enumeration Evaluation

Check Enumeration Evaluation is the process of determining whether or not the number of individual

results, produced from the comparison of some set of values, satisfies the specified

CheckEnumeration value.

The following tables describe how each CheckEnumeration value affects the final result of an

evaluation. The far left column identifies the CheckEnumeration value in question. The middle

column specifies the different combinations of individual results that the CheckEnumeration value

may bind together. The last column specifies the final result according to each combination of individual

results. It is important to note that if an individual result is negated, then a ‘true’ result is ‘false’ and a

‘false’ result is ‘true’, and all other results stay as is.

Enumeration Value Number of Individual Results Final Result

all true false error unknown not evaluated not applicable

1+ 0 0 0 0 0+ true

0+ 1+ 0+ 0+ 0+ 0+ false

0+ 0 1+ 0+ 0+ 0+ error

0+ 0 0 1+ 0+ 0+ unknown

0+ 0 0 0 1+ 0+ not evaluated

0 0 0 0 0 1+ not applicable

Enumeration Value Number of Individual Results Final Result

at least one true false error unknown not evaluated not applicable

1+ 0+ 0+ 0+ 0+ 0+ true

0 1+ 0 0 0 0+ false

0 0+ 1+ 0+ 0+ 0+ error

0 0+ 0 1+ 0+ 0+ unknown

0 0+ 0 0 1+ 0+ not evaluated

0 0 0 0 0 1+ not applicable

Enumeration Value Number of Individual Results Final Result

none satisfy true false error unknown not evaluated not applicable

0 1+ 0 0 0 0+ true

1+ 0+ 0+ 0+ 0+ 0+ false

0 0+ 1+ 0+ 0+ 0+ error

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

118

Copyright © 2012, The MITRE Corporation. All rights reserved.

0 0+ 0 1+ 0+ 0+ unknown

0 0+ 0 0 1+ 0+ not evaluated

0 0 0 0 0 1+ not applicable

Enumeration Value Number of Individual Results Final Result

only one true false error unknown not evaluated not applicable

1 0+ 0 0 0 0+ true

2+ 0+ 0+ 0+ 0+ 0+ false

0 1+ 0 0 0 0+

0,1 0+ 1+ 0+ 0+ 0+ error

0,1 0+ 0 1+ 0+ 0+ unknown

0,1 0+ 0 0 1+ 0+ not evaluated

0 0 0 0 0 1+ not applicable

5.3.6.2 Operator Enumeration Evaluation

Operator Enumeration Evaluation is the process of combining the individual results of evaluations using

logical operations. The following table shows the notation used when describing the number of

individual results that evaluate to a particular result.

Notation Description
X x individual results are…

x, y x or y individual results are…

x+ x or more individual results are…

Odd an odd number of individual results are…

Even an even number of individual results are…

The following tables describe how each OperatorEnumeration value affects the final result of an

evaluation. The far left column identifies the OperatorEnumeration value in question. The middle

column specifies the different combinations of individual results that the OperatorEnumeration

value may bind together. The last column specifies the final result according to each combination of

individual results. It is important to note that if an individual result is negated, then a ‘true’ result is

‘false’ and a ‘false’ result is ‘true’, and all other results stay as is.

Enumeration Value Number of Individual Results Final Result

AND true false error unknown not evaluated not applicable

1+ 0 0 0 0 0+ true

0+ 1+ 0+ 0+ 0+ 0+ false

0+ 0 1+ 0+ 0+ 0+ error

0+ 0 0 1+ 0+ 0+ unknown

0+ 0 0 0 1+ 0+ not evaluated

0 0 0 0 0 1+ not applicable

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

119

Copyright © 2012, The MITRE Corporation. All rights reserved.

Enumeration Value Number of Individual Results Final Result

ONE true false error unknown not evaluated not applicable

1+ 0+ 0 0 0 0+ true

2+ 0+ 0+ 0+ 0+ 0+ false

0 1+ 0 0 0 0+ false

0,1 0+ 1+ 0+ 0+ 0+ error

0,1 0+ 0 1+ 0+ 0+ unknown

0,1 0+ 0 0 1+ 0+ not evaluated

0 0 0 0 0 1+ not applicable

Enumeration Value Number of Individual Results Final Result

OR true false error unknown not evaluated not applicable

1+ 0+ 0+ 0+ 0+ 0+ true

0 1+ 0 0 0 0+ false

0 0+ 1+ 0+ 0+ 0+ error

0 0+ 0 1+ 0+ 0+ unknown

0 0+ 0 0 1+ 0+ not evaluated

0 0 0 0 0 1+ not applicable

Enumeration Value Number of Individual Results Final Result

XOR true false error unknown not evaluated not applicable

odd 0+ 0 0 0 0+ true

even 0+ 0 0 0 0+ false

0+ 0+ 1+ 0+ 0+ 0+ error

0+ 0+ 0 1+ 0+ 0+ unknown

0+ 0+ 0 0 1+ 0+ not evaluated

0 0 0 0 0 1+ not applicable

5.3.6.3 OVAL Entity Evaluation

OVAL Entity Evaluation is the process of comparing the specified value(s), from an OVAL Object or State

Entity, against the corresponding system state information in the context of the selected datatype and

operation.

5.3.6.3.1 Datatype and Operation Evaluation

The result of applying an operation in the context of a specified datatype MUST evaluate to ‘true’ only if

the values being compared satisfy the conditions of the operation for the specified datatype. If the

values being compared do not satisfy the conditions of the operation, the final result MUST be ‘false’.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

120

Copyright © 2012, The MITRE Corporation. All rights reserved.

To ensure consistency in the comparison of the value(s) specified in the OVAL Object and State Entities

with the system state information, the operations for each datatype must be defined. The following

table describes how each operation must be performed in the context of a specific datatype.

Enumeration
Value

Description of Operations

binary Data of this type conforms to the W3C Recommendation for hex-encoded binary
data [1].

equals: The collected binary value is equal to the specified binary value only if the
collected binary value and the specified binary value are the same length and the
collected binary value and the specified binary value contain the same characters in
the same positions.

not equal: The collected binary value is not equal to the specified binary value only if
the collected binary value is not the same length as the specified binary value or the
collected binary value and specified binary value do not contain the same characters
in the same positions.

boolean Data of this type conforms to the W3C Recommendation for boolean data [2].

equals:

 Collected Value

false / 0 true / 1

Specified
Value

false / 0 true false

true / 1 false true

not equal:

 Collected Value

false / 0 true / 1

Specified
Value

false / 0 false true

true / 1 true false

evr_string Data of this type conforms to the format EPOCH:VERSION-RELEASE and comparisons
involving this type MUST follow the algorithm described in the rpmVersionCompare()
function which is located in lib/psm.c of the RPM source code.

equals: The collected evr_string value c is equal to the specified evr_string value s
only if the result of the algorithm described in the rpmVersionCompare(c,s) function
is 0.

not equal: The collected evr_string value c is not equal to the specified evr_string
value s only if the result of the algorithm described in the rpmVersionCompare(c,s)
function is -1 or 1.

greater than: The collected evr_string value c is greater than the specified evr_string
s value only if the result of the algorithm described in the rpmVersionCompare(c,s)

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

121

Copyright © 2012, The MITRE Corporation. All rights reserved.

function is 1.

greater than or equal: The collected evr_string value c is greater than or equal to the
specified evr_string value s only if the result of the algorithm described in the
rpmVersionCompare(c,s) function is 1 or 0.

less than: The collected evr_string value c is less than the specified evr_string value s
only if the result of the algorithm described in the rpmVersionCompare(c,s) function
is -1.

less than or equal: The collected evr_string value c is less than or equal to the
specified evr_string value s only if the result of the algorithm described in the
rpmVersionCompare(c,s) function is -1 or 0.

fileset_revision Data of this type conforms to the version string related to filesets in HP-UX. An
example would be 'A.03.61.00'.

Please note that this needs further community review and discussion.

float Data of this type conforms to the W3C Recommendation for float data [3].

equals: The collected float value is equal to the specified float value only if the
collected float value and the specified float value are numerically equal.

not equal: The collected float value is not equal to the specified float value only if the
collected float value and the specified float value are not numerically equal.

greater than: The collected float value is greater than the specified float value only if
the collected float value is numerically greater than the specified float value.

greater than or equal: The collected float value is greater than or equal to the
specified float value only if the collected float value is numerically greater than or
equal to the specified float value.

less than: The collected float value is less than the specified float value only if the
collected float value is numerically less than the specified float value.

less than or equal: The collected float value is less than or equal to the specified float
value only if the collected float value is numerically less than or equal to the specified
float value.

ios_version Data of this type conforms to Cisco IOS Train strings. These are in essence version
strings for IOS. Please refer to Cisco's IOS Reference Guide for information on how to
compare different Trains as they follow a very specific pattern.[17]

Please note that this needs further community review and discussion.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

122

Copyright © 2012, The MITRE Corporation. All rights reserved.

int
Data of this type conforms to the W3C Recommendation for integer data [4].

equals: The collected integer value is equal to the specified integer value only if the
collected integer value and the specified integer value are numerically equal.

not equal: The collected integer value is not equal to the specified integer value only
if the collected integer value and the specified integer value are not numerically
equal.

greater than: The collected integer value is greater than the specified integer value
only if the collected integer value is numerically greater than the specified integer
value.

greater than or equal: The collected integer value is greater than or equal to the
specified integer value only if the collected integer value is numerically greater than
or equal to the specified integer value.

less than: The collected integer value is less than the specified integer value only if
the collected integer value is numerically less than the specified integer value.

less than or equal: The collected integer value is less than or equal to the specified
integer value only if the collected integer value is numerically less than or equal to
the specified integer value.

bitwise and: The collected integer satisfies the bitwise and operation with the
specified integer value only if the result of performing the bitwise and operation on
the binary representation of the collected integer value and the binary
representation of the specified integer value is the binary representation of the
specified value.

bitwise or: The collected integer satisfies the bitwise or operation with the specified
integer value only if the result of performing the bitwise or operation on the binary
representation of the collected integer value and the binary representation of the
specified integer value is the binary representation of the specified value.

ipv4_address
The ipv4_address datatype represents IPv4 addresses and IPv4 address prefixes
(using CIDR notation). Legal values are represented in dotted-quad notation ('a.b.c.d'
where 'a', 'b', 'c', and 'd' are integers from 0-255), optionally followed by a slash ('/')
and either a prefix-length (an integer from 0-32) or a netmask represented in dotted-
quad notation ('a.b.c.d' where 'a', 'b', 'c', and 'd' are integers from 0-255). Examples
of legal values are '192.0.2.0', '192.0.2.0/32', and '192.0.2.0/255.255.255.255'.
Additionally, leading zeros are permitted such that '192.0.2.0' is equal to
'192.000.002.000'. If a prefix-length is not specified, the default value is 32.

equals: The collected IPv4 address is equal to the specified IPv4 address only if each
octet of the collected IPv4 address is numerically equal to the corresponding octet of
the specified IPv4 address after the corresponding prefix-lengths have been applied

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

123

Copyright © 2012, The MITRE Corporation. All rights reserved.

to each IPv4 address. Please note that this needs further community review and
discussion and may change as a result.

not equal: The collected IPv4 address is not equal to the specified IPv4 address if any
octet in the collected IPv4 address is numerically not equal to the corresponding
octet of the specified IPv4 address after the prefix-lengths have been applied to each
IPv4 address. Please note that this needs further community review and discussion
and may change as a result.

greater than: The collected IPv4 address is greater than the specified IPv4 address
only if the collected IPv4 address is numerically greater than the specified IPv4
address when compared as unsigned integers. If the collected IPv4 address and the
specified IPv4 address have different prefix lengths, an error MUST be reported.
Please note that this needs further community review and discussion and may change
as a result.

greater than or equal: The collected IPv4 address is greater than or equal to the
specified IPv4 address only if the collected IPv4 address is numerically greater than
or equal to the specified IPv4 address when compared as unsigned integers. If the
collected IPv4 address and the specified IPv4 address have different prefix lengths,
an error MUST be reported. Please note that this needs further community review
and discussion and may change as a result.

less than: The collected IPv4 address is less than the specified IPv4 address only if
the collected IPv4 address is numerically less than the specified IPv4 address when
compared as unsigned integers. If the collected IPv4 address and the specified IPv4
address have different prefix lengths an error MUST be reported. Please note that
this needs further community review and discussion and may change as a result.

less than or equal: The collected IPv4 address is less than or equal to the specified
IPv4 address only if the collected IPv4 address is numerically less than or equal to the
specified IPv4 address when compared as unsigned integers. If the collected IPv4
address and the specified IPv4 address have different prefix lengths an error MUST
be reported. Please note that this needs further community review and discussion
and may change as a result.

subset of: The set of collected IPv4 addresses is a subset of the set of specified IPv4
addresses only if every IPv4 address, in the set of collected IPv4 addresses, is present
in the set of specified IPv4 addresses. Please note that this needs further community
review and discussion and may change as a result.

superset of: The set of collected IPv4 addresses is a superset of the set of specified
IPv4 addresses only if every IPv4 address, in the set of specified IPv4 addresses, is
present in the set of collected IPv4 addresses. Please note that this needs further
community review and discussion and may change as a result.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

124

Copyright © 2012, The MITRE Corporation. All rights reserved.

ipv6_address Data of this type conforms to the IETF specification RFC 4291 for textual
representations of IPv6 addresses and IPv6 address prefixes (See Section 2.2 and
2.3). If a prefix-length is not specified, the default value is 128. [21]

equals: The collected IPv6 address is equal to the specified IPv6 address only if each
component of the collected IPv6 address is numerically equal to the corresponding
component of the specified IPv6 address after the corresponding prefix-lengths have
been applied to each IPv6 address. Please note that this needs further community
review and discussion and may change as a result.

not equal: The collected IPv6 address is not equal to the specified IPv6 address if any
component in the collected IPv4 address is numerically not equal to the
corresponding component of the specified IPv6 address after the prefix-lengths have
been applied to each IPv6 address. Please note that this needs further community
review and discussion and may change as a result.

greater than: Please note that this needs further community review and discussion.

greater than or equal: Please note that this needs further community review and
discussion.

less than: Please note that this needs further community review and discussion.

less than or equal: Please note that this needs further community review and
discussion.

subset of: The set of collected IPv6 addresses is a subset of the set of specified IPv6
addresses only if every IPv6 address, in the set of collected IPv6 addresses, is present
in the set of specified IPv6 addresses. Please note that this needs further community
review and discussion and may change as a result.

superset of: The set of collected IPv6 addresses is a superset of the set of specified
IPv6 addresses only if every IPv6 address, in the set of specified IPv6 addresses, is
present in the set of collected IPv6 addresses. Please note that this needs further
community review and discussion and may change as a result.

string Data of this type conforms to the W3C Recommendation for string data [6].

equals: The collected string value is equal to the specified string value only if the
collected string value and the specified string value are the same length and the
collected string value and the specified string value contain the same characters in
the same positions.

not equal: The collected string value is not equal to the specified string value only if
the collected string value is not the same length as the specified string value or the
collected string value and specified string value do not contain the same characters
in the same positions.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

125

Copyright © 2012, The MITRE Corporation. All rights reserved.

case insensitive equals: The collected string value is equal to the specified string
value only if the collected string value and the specified string value are the same
length and the collected string value and the specified string value contain the same
characters, regardless of case, in the same positions.

case insensitive not equal: The collected string value is not equal to the specified
string value only if the collected string value and the specified string value are not
the same length or the collected string value and the specified string value do not
contain the same characters, regardless of case, in the same positions.

pattern match: The collected string value will match the specified string value only if
the collected string value matches the specified string value when the specified
string is interpreted as a Perl Compatible Regular Expression (PCRE)[9].

version Data of this type represents a value that is a hierarchical list of non-negative integers
separated by a single character delimiter. Any single non-integer character may be
used as a delimiter and the delimiter may vary between the non-negative integers of
a given version value. The hierarchical list of non-negative integers must be
compared sequentially from left to right. When the version values, under
comparison, have different-length lists of non-negative integers, zeros must be
appended to the end of the values such that the lengths of the lists of non-negative
integers are equal.

equals: The collected version value is equal to the specified version value only if
every non-negative integer in the collected version value is numerically equal to the
corresponding non-negative integer in the specified version value.

not equal: The collected version value is not equal to the specified version value if
any non-negative integer in the collected version value is not numerically equal to
the corresponding non-negative integer in the specified version value.

greater than: The collected version value c is greater than the specified version value
s only if the following algorithm returns true:

c = c1,c2,…,cn where , is any non-integer character
s = s1,s2,…,sn where , is any non-integer character

for i = 1 to n
 if ci > si

 return true
 if ci < si
 return false
 if ci == si

 if i != n
 continue
 else

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

126

Copyright © 2012, The MITRE Corporation. All rights reserved.

 return false

greater than or equal: The collected version value c is greater than or equal to the
specified version value s only if the following algorithm returns true:

c = c1,c2,…,cn where , is any non-integer character
s = s1,s2,…,sn where , is any non-integer character

for i = 1 to n
 if ci > si

 return true
 if ci < si
 return false
 if ci == si

 if i != n
 continue
 else
 return true

less than: The collected version value c is less than the specified version value s only
if the following algorithm returns true:

c = c1,c2,…,cn where , is any non-integer character
s = s1,s2,…,sn where , is any non-integer character

for i = 1 to n
 if ci < si

 return true
 if ci > si
 return false
 if ci == si

 if i != n
 continue
 else
 return false

less than or equal: The collected version value c is less than or equal to the specified
version value s only if the following algorithm returns true:

c = c1,c2,…,cn where , is any non-integer character
s = s1,s2,…,sn where , is any non-integer character

for i = 1 to n
 if ci < si

 return true
 if ci > si

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

127

Copyright © 2012, The MITRE Corporation. All rights reserved.

 return false
 if ci == si

 if i != n
 continue
 else
 return true

record Data of this type describes an entity with structured set of named fields and values
as its content. The record datatype is currently prohibited from being used on
variables.

equals: The collected record value is equal to the specified record value only if each
collected OVAL Field has a corresponding OVAL Field with the same name property
and that the collected OVAL Field value matches the specified OVAL Field value in the
context of the datatype and operation as described above.

5.3.6.4 Variable Check Evaluation

It is often necessary to reference a variable from an OVAL Object or State Entity in order to specify

multiple values or to use a value that was collected at runtime. When an OVAL Variable is referenced

from an OVAL Object or State Entity using the var_ref property, the system state information will be

compared to the every OVAL Variable value in the context of the specified datatype and operation. The

final result of these comparisons are dependent on the value of the var_check property which

specifies how many of the values, contained in OVAL Variable, must match the system state information

to evaluate to a result of ‘true’. The valid values for the var_check property are the defined in the

CheckEnumeration.

Enumeration Value Description

all The OVAL Object or State Entity matches the system state information only if the
value of the OVAL Item Entity matches all of the values in the referenced the
OVAL Variable in the context of the datatype and operation specified in the OVAL
Object or State Entity.

at least one The OVAL Object or State Entity matches the system state information only if the
value of the OVAL Item Entity matches one or more of the values in the
referenced OVAL Variable in the context of the datatype and operation specified
in the OVAL Object or State Entity.

none satisfy The OVAL Object or State Entity matches the system state information only if the
OVAL Item Entity matches zero of the values in the referenced OVAL Variable in
the context of the specified datatype and operation.

only one The OVAL Object or State Entity matches the system state information only if the
OVAL Item Entity matches one of the values in the referenced OVAL Variable in
the context of the specified datatype and operation.

5.3.6.4.1 Determining the Final Result of the Variable Check Evaluation

For more detailed information on how to combine the individual results of the comparisons between

the OVAL object or State Entities and the system state information to determine the final result of

applying the var_check property, see Section 5.3.6.1 Check Enumeration Evaluation.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

128

Copyright © 2012, The MITRE Corporation. All rights reserved.

5.3.6.5 OVAL Entity Casting

In certain situations, it is possible that the datatype specified on the OVAL Entity is different from the

datatype of the system state information. When this happens, it is required that an attempt is made to

cast the system state information to the datatype specified by the OVAL Entity before the operation is

applied. If the cast is unsuccessful, the final result of the OVAL Entity Evaluation MUST be ‘error’.

Otherwise, the final result is dependent on the outcome of the Datatype and Operation Evaluation and

the Variable Check Evaluation if an OVAL Variable is referenced. The process of casting a value of one

datatype to a value of another datatype must conform to Section 5.3.8 Entity Casting.

 Masking Data 5.3.7

When the mask property is set to ‘true’ on an OVAL Entity or an OVAL Field, the value of that OVAL

Entity or OVAL Field MUST NOT be present in the OVAL Results. Additionally, the mask property MUST

be set to ‘true’ for any OVAL Entity or OVAL Field or corresponding OVAL Item Entity or OVAL Field in the

OVAL Results where the system state information was omitted.

When the mask property is set to ‘true’ on an OVAL Entity with a datatype of ‘record’, each OVAL

Field MUST have its operation and value or value omitted from the OVAL Results regardless of the OVAL

Field’s mask property value.

It is possible for masking conflicts to occur where one entity has mask set to ‘true’ and another entity

has mask set to ‘false’. Such a conflict will occur when the mask attribute is set differently on an OVAL

Object and OVAL State or when more than one OVAL Objects identify the same OVAL Item(s). When

such a conflict occurs the value MUST always be masked.

Values MUST NOT be masked in OVAL System Characteristics that are not contained within OVAL

Results.

 Entity Casting 5.3.8

Casting is performed whenever the datatype of a value, used during evaluation, differs from the

specified datatype whether it be on an OVAL Entity or an OVAL Function. In most scenarios, it will be

possible to attempt the cast of a value from one datatype to another.

5.3.8.1 Attempting to Cast a Value

When attempting to cast a value from one datatype to another, the value under consideration must be

parsed according to the specified datatype. If the value is successfully parsed according to the definition

of the specified datatype in the oval:DatatypeEnumeration, this constitutes a successful cast. If the

value is not successfully parsed according to the definition of the specified datatype, this means that it is

not possible to cast the value to the specified datatype and an error MUST be reported for the construct

attempting to perform the cast.

5.3.8.2 Prohibited Casting

In some scenarios, it is not possible to perform a cast from one datatype to another due to the

datatypes, under consideration, being incompatible. When an attempt is made to cast two incompatible

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

129

Copyright © 2012, The MITRE Corporation. All rights reserved.

datatypes, an error MUST be reported. The following outlines the casts where the datatypes are

incompatible:

 An attempt to cast a value of datatype ‘record’ to any datatype other than ‘record’.

 An attempt to cast a value of datatype ‘ipv4_address’ to any datatype other than ‘ipv4_address’

or ‘string’.

 An attempt to cast a value of datatype ‘ipv6_address’ to any datatype other than ‘ipv6_address’

or ‘string’.

 An attempt to cast a value with a datatype other than ‘ipv4_address’ or ‘string’ to

‘ipv4_address’.

 An attempt to cast a value with a datatype other than ‘ipv6_address’ or ‘string’ to

‘ipv6_address’.

6 XML Representation
The XML Representation for the OVAL Language Data Model is documented via a series of XML

Schemas.14 These schemas describe how the information presented in this Specification is formatted

and represented as XML Documents. Please refer to the appropriate Schema for more information

about a specific XML representation.

OVAL Common Model

https://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/oval-common-schema.xsd

OVAL Definitions Model

http://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/oval-definitions-schema.xsd

OVAL System Characteristics Model

http://oval.mitre.org/language/version5.10.1/ovalsc/complete/oval-system-characteristics-schema.xsd

OVAL Results Model

http://oval.mitre.org/language/version5.10.1/ovalresults/complete/oval-results-schema.xsd

OVAL Variables Model

http://oval.mitre.org/language/version5.10.1/ovalvar/complete/oval-variables-schema.xsd

14
 XML Schema Part 0: Primer Second Edition http://www.w3.org/TR/xmlschema-0/

https://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/oval-common-schema.xsd
http://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/oval-definitions-schema.xsd
http://oval.mitre.org/language/version5.10.1/ovalsc/complete/oval-system-characteristics-schema.xsd
http://oval.mitre.org/language/version5.10.1/ovalresults/complete/oval-results-schema.xsd
http://oval.mitre.org/language/version5.10.1/ovalvar/complete/oval-variables-schema.xsd
http://www.w3.org/TR/xmlschema-0/

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

130

Copyright © 2012, The MITRE Corporation. All rights reserved.

OVAL Directives Model

http://oval.mitre.org/language/version5.10.1/ovaldir/complete/oval-directives-schema.xsd

The complete listing of XML representation resources can be found on the OVAL website.15

6.1 Signature Support
In order to ensure integrity and authenticity of content, the OVAL Data Model supports the use of XML

Digital Signatures as defined by the W3C. These signatures can be used to provide confidence that the

data and intent of OVAL Content has not been compromised or modified from its original state.

XML Digital Signatures may be applied to the entire collection of content at once or to the individual

pieces of the content such as OVAL Definitions, OVAL Tests, OVAL Objects, etc.

OVAL uses an enveloped XML Digital Signature as described in the official XML Digital Signatures

Specification as defined by the W3C. For more information, please refer to the XML Signature Syntax

and Processing Specification.16

6.2 XML Extensions
In a number of locations in the OVAL XML Schemas, extension points exist to allow additional XML

fragments to be provided as part of the XML Document. These extension points are implemented using

the xsd:any17 element. They are included in the OVAL Language to facilitate experimentation, in the

form of adding additional information within the XML Document, and to allow vendors and content

authors to provide details that are not currently part of the OVAL Language.

The xsd:any construct allows the addition of any valid XML within OVAL content. Unlike the other

content allowed in OVAL, this content is not constrained by the OVAL Language schema.

6.3 ElementMapType
The ElementMapType explicitly states the OVAL Object, OVAL State, and OVAL Item associated with a

specific OVAL Test in the OVAL Language. This mapping allows tools to programmatically determine this

information at run-time. Within the OVAL Language XML Schema representation this type is used by

each OVAL Test in the various OVAL Component Models. The ElementMapType MUST not be used in

OVAL Content.

Property Type Multiplicity Description

test string 1 The name of the OVAL Test being mapped.

object string 0..1 The OVAL Object associated with the specified OVAL Test.

state string 0..1 The OVAL State associated with the specified OVAL Test.

15
 See the OVAL Language documentation at: http://oval.mitre.org/language/version5.10.1/

16
 XML Signature Syntax and Processing Specification http://www.w3.org/TR/xmldsig-core/

17
 XML Schema Definition of the Any Element, Any Attribute http://www.w3.org/TR/xmlschema-0/#any

http://oval.mitre.org/language/version5.10.1/ovaldir/complete/oval-directives-schema.xsd
http://oval.mitre.org/language/version5.10.1/
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmlschema-0/#any

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

131

Copyright © 2012, The MITRE Corporation. All rights reserved.

Item string 0..1 The OVAL Item associated with the specified OVAL Test.

6.4 Official OVAL Component Models
Below is a list of the current, official OVAL Component Models:

AIX

Defines tests targeted for IBM’s AIX Operating System platform.

http://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/aix-definitions-schema.xsd

Apache

[Deprecated] Defines tests targeted for Apache web server software.

http://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/apache-definitions-schema.xsd

Cisco CatOS

Defines tests targeted for Cisco’s CatOS platform, used for network switches.

http://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/catos-definitions-schema.xsd

VMWare ESX

Defines tests targeted for VMWare’s ESX Server platform.

http://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/esx-definitions-schema.xsd

FreeBSD

Defines tests targeted for the FreeBSD Operating System platform.

http://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/freebsd-definitions-schema.xsd

HP-UX

Defines tests targeted for Hewlett-Packard’s HP-UX Operating System platform.

http://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/hpux-definitions-schema.xsd

Independent

Defines tests that are independent of a specific software platform.

http://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/independent-definitions-

schema.xsd

Cisco IOS

Defines tests targeted for Cisco’s IOS platform, used for network switches and routers.

http://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/ios-definitions-schema.xsd

Linux

Defines tests targeted for a broad set of LINUX-based Operating System platforms.

http://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/linux-definitions-schema.xsd

http://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/aix-definitions-schema.xsd
http://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/apache-definitions-schema.xsd
http://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/catos-definitions-schema.xsd
http://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/esx-definitions-schema.xsd
http://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/freebsd-definitions-schema.xsd
http://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/hpux-definitions-schema.xsd
http://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/independent-definitions-schema.xsd
http://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/independent-definitions-schema.xsd
http://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/ios-definitions-schema.xsd
http://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/linux-definitions-schema.xsd

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

132

Copyright © 2012, The MITRE Corporation. All rights reserved.

MacOS

Defines tests targeted for Apple’s MacOS Operating System platform.

http://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/macos-definitions-schema.xsd

Cisco PixOS

Defines tests targeted for Cisco’s Pix OS platform, used for IP firewalls and NAT appliances.

http://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/pixos-definitions-schema.xsd

Microsoft SharePoint

Defines tests targeted for Microsoft’s SharePoint software.

http://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/sharepoint-definitions-

schema.xsd

Solaris

Defines tests targeted for the Solaris Operating System platform.

http://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/solaris-definitions-schema.xsd

UNIX

Defines tests targeted for a broad set of UNIX-based Operating System platforms.

http://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/unix-definitions-schema.xsd

Windows

Defines tests targeted for the Microsoft Windows Operating System platform.

http://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/windows-definitions-schema.xsd

6.5 Use of xsi:nil
When authoring OVAL Content, it is sometimes required or desirable to make use of an OVAL Entity that

contains no content. This can even apply to entities whose XML Schema indicates that they should have

content. Within OVAL, entities that are allowed to be “nillable” by their XML Schema can use the

@xsi:nil attribute to indicate that the entity should have no content associated with it.

The interpretation or meaning of an entity that has @xsi:nil=“true” set is dependent on the meaning

assigned to the entity by the appropriate documentation. Any entity that allows an @xsi:nil attribute to

be set must define how this case should be interpreted.

6.6 Validation Requirements
All XML content written against the XML Schema implementation of the OVAL Language MUST be both
XML Schema and Schematron valid as defined in the XML Schemas associated with the XML Schema
implementation of the OVAL Language.

http://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/macos-definitions-schema.xsd
http://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/pixos-definitions-schema.xsd
http://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/sharepoint-definitions-schema.xsd
http://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/sharepoint-definitions-schema.xsd
http://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/solaris-definitions-schema.xsd
http://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/unix-definitions-schema.xsd
http://oval.mitre.org/language/version5.10.1/ovaldefinition/complete/windows-definitions-schema.xsd

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

133

Copyright © 2012, The MITRE Corporation. All rights reserved.

Appendix A – Extending the OVAL Language Data Model
The OVAL Language Data Model defines a set of core capabilities, as described within this Specification

document, with numerous extension points. This appendix highlights the opportunities for extension

with in the OVAL Language. It is important to understand the role of OVAL Component Models within

the OVAL Language, as they allow OVAL to easily expand to new platforms and system constructs.

Additionally, this appendix will raise awareness of the other extension points that have been built into

the OVAL Language.

OVAL Component Models
The core capabilities described above establish a framework for defining OVAL Tests that are related at

some level by the software they describe. Tests that are identical across multiple platforms, and thus

represent a more general class of tests, are grouped together in an OVAL Component Model.

These platform-specific constructs are defined in their own Models, called OVAL Component Models.

The OVAL Component Models each provide the necessary constructs (i.e., OVAL Tests, OVAL Objects,

and OVAL States) to accomplish checks that apply to the given platform.

When considering a new OVAL Component Model, it is important to understand what commonality will

be captured by the new extension. Additionally, the low-level APIs and other relevant implementation

information should be understood in order to confirm that viability of the implementation of the

extension.

Within the OVAL Component Models, similar concepts or concepts that are related to a type of platform

are grouped together. These groupings are purely conceptual, as there is no actual linking between

them. An author’s OVAL Definitions can pull content from multiple different OVAL Component Models.

This structure allows the ability to group checks that relate to a broad section of software together,

while still retaining the ability to separate disparate ones.

OVAL Definitions Model

The following sections describe how the OVAL Definitions Model is extended by OVAL Component

Models to develop platform specific constructs in the OVAL Language.

New OVAL Tests

OVAL Tests serve as the mechanism for combining an OVAL Object with one or more OVAL States. When

creating an OVAL Component Model, a test is created that extends the abstract OVAL Definitions Model

TestType construct.

An OVAL Test extension will typically define the specific OVAL Object and OVAL State that are combined

to form the OVAL Test extension. Additionally the extension will provide documentation regarding the

extension that describes its purpose and use. All of the remaining detail (the relevant data that must be

collected and how to evaluate the check) will be part of the OVAL Object and/or OVAL State.

New OVAL Objects

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

134

Copyright © 2012, The MITRE Corporation. All rights reserved.

OVAL Objects describe the system-level detail that is required for completing the check that is being

defined. Within an OVAL Component Model, an object is created to capture the required information by

extending the abstract OVAL Definitions Model oval-def:ObjectType construct.

OVAL Objects typically align with low-level system APIs or other system level structures. This allows

those implementing the new OVAL Object to more easily understand how to access the required

information while executing the assessment.

In order to provide the required information for an OVAL Object extension, the construct needs to

provide documentation for the extension, and also add any required OVAL Entities to capture the

necessary data for the check. For information on adding OVAL Entities, see Section 0 New OVAL Entity.

Optionally, the OVAL Object can define a set of behaviors. These behaviors are used to better direct one

or more aspects of how the required data is collected for the entity.

New OVAL States

OVAL States describe the necessary conditions under which a collected OVAL Item should be considered

a passing check. As such, within an OVAL Component Model a state is created to capture the required

information by extending the abstract OVAL Definitions Model StateType construct.

In order to provide the required information for an OVAL State extension, the construct needs to

provide documentation for the extension and also add any required entities to capture the information

that will determine the result of the check.

Additionally, an OVAL State extension typically requires that all of the entities that were defined as part

of the associated OVAL Object extension are also included in the OVAL State extension.

New OVAL Entity

An OVAL Entity represents a single piece of system configuration, and is used by OVAL Objects, OVAL

States, and OVAL Items, each with slightly different meaning. When used in the context of an OVAL

Object the OVAL Entity provides a way to uniquely identify a single OVAL Item. When used in the

context of an OVAL State the OVAL Entity provides a way to specify the expected value(s) of an OVAL

Item. When used in the context of an OVAL Item, the OVAL Entity indicates a property and its value that

has been collected.

When creating an OVAL Entity, the following pieces of information need to be defined:

 datatype

 operation restrictions when used in an OVAL Object or OVAL State

 use of xsi:nil

The datatype can be any of the datatypes defined by the OVAL Language. The operation restrictions

refer to any limitations on the allowed operations for a specific OVAL Entity. The superset of available

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

135

Copyright © 2012, The MITRE Corporation. All rights reserved.

operations is determined by the oval:OperationEnumeration. A restriction can be added in the

OVAL Component Model to limit the available operations to a subset of the enumeration.

Additionally, any OVAL entity that allows the use of nil must define what meaning that condition has

when used. See Section 6.5 Use of xsi:nil.

OVAL System Characteristics Model

New OVAL Items

OVAL Items describe the system-level details that have been collected as part of an assessment. As such,

within an OVAL Component Model an item is created to capture the collected information by extending

the abstract OVAL System Characteristics Model ItemType construct.

In order to provide the required information for an OVAL Item extension, the construct needs to provide

documentation for the extension as well as all of the entities that need to exist to hold all of the

collected item’s relevant information.

Extension Points within the OVAL Definitions Model
In addition to the OVAL Component Models, other extension points exist within the OVAL Definitions

Model. Those additional extension points are described here.

Generator Information

The generator construct captures information about the author or tool that created the content

found in the current context. It allows extension via an xsd:any value, which lets an author or tool

provide additional XML information regarding the content’s creation.

For more information about xsd:any usage, see Section 6.2 XML Extensions.

OVAL Definition Metadata

The Metadata content provides additional contextual information regarding the OVAL Content. It

captures information such as title, description, and affected platform and product information.

Additionally, the Metadata can provide additional information using the xsd:any construct.

For more information about xsd:any usage, see Section 6.2 XML Extensions.

Extension Points within the OVAL System Characteristics Model
The OVAL System Characteristics Model provides the framework capabilities for detailing the

information that has been collected as part of an assessment. To provide a way to communicate these

details for a given low-level, this model is extended in the two ways, Generator Information and System

Information.

Generator Information

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

136

Copyright © 2012, The MITRE Corporation. All rights reserved.

The generator construct captures information about the author or tool that created the content

found in the current context. It allows extension via an xsd:any value, which lets an author or tool

provide additional XML information regarding the content’s creation.

For more information about xsd:any usage, see Section 6.2 XML Extensions.

System Information

The system_information construct provides detailed information about the system that has been

targeted for assessment. It captures information such as the host name, the IP address for the target,

and other relevant asset-related fields.

Additionally, the information here can be extended using the xsd:any construct to provide additional

asset-related information.

Integrating Asset Identification

The Asset Identification specification18 provides a standardized way of reporting asset information

across different organizations. Asset Identification elements can hold data useful for identifying what

tool, what version of that tool was used, and identify other assets used to compile an OVAL document

(e.g. persons, organizations, etc.).

To support greater interoperability, the oval-sc:system_info property supports an extension

point that allows arbitrary data to be supplied. It is at this point that OVAL content MAY make use of

extensions to provide AI information using the AI Specification. Please see the Extensions Section: 6.2

XML Extensions for more information.

For more information about xsd:any usage, see Section 6.2 XML Extensions.

OVAL Results Model
The OVAL Results Model provides the framework capabilities for communicating the results of an

assessment. This model may be extended through Generator Information.

Generator Information

The generator construct captures information about the author or tool that created the content

found in the current context. It allows extension via an xsd:any value, which lets an author or tool

provide additional XML information regarding the content’s creation.

For more information about xsd:any usage, see Section 6.2 XML Extensions.

18
 Asset Inventory (AI): http://scap.nist.gov/specifications/ai/

http://scap.nist.gov/specifications/ai/

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

137

Copyright © 2012, The MITRE Corporation. All rights reserved.

Appendix B - OVAL Language Versioning Policy
The OVAL Language Versioning Policy is used to determine whether a new revision will require a major
version change, minor version change, or a version update, and how version information is represented
and conveyed in the OVAL Language.

A three-component version identifier is used to track the evolution of the OVAL Language over time.
Each component of the version identifier is a numeric value and corresponds to one of the three release
types — "Major", "Minor", and "Update" — each of which is subject to the OVAL Language Revision
Policy. The complete version identifier has the following form: MAJOR.MINOR.UPDATE. For example,
"5.10.1".

A high-level overview of each type of OVAL release is described below:

 Major Release – A major release is for adding features that require breaking backward
compatibility with previous versions of the OVAL Language or represent fundamental changes to
concepts in the OVAL Language.

 Minor Release – A minor release is for adding features that do not break backward compatibility
with previous versions of the OVAL Language.

 Update Release – An update release is reserved for fixing critical defects in a particular version
of the OVAL Language that affects the usability of the release.

The complete OVAL Language Versioning Policy is available on the OVAL website.19

Appendix C - OVAL Language Deprecation Policy
When an OVAL Language construct is marked as deprecated its usage becomes strongly discouraged and

it will be removed in a later release. Constructs may be removed for a number of reasons including

security issues, language consistency, or obsolescence. When a language construct is deprecated in

remains as a valid construct of the OVAL Language for at least one release cycle of the OVAL Language.

All deprecated constructs are clearly annotated in the OVAL Language schemas and this specification

document including a detailed description of the justification for deprecation.

The complete OVAL Language Deprecation Policy is available on the OVAL website.20

19
 The OVAL Language Versioning Policy https://oval.mitre.org/language/about/versioning.html

20
 The OVAL Language Deprecation Policy http://oval.mitre.org/language/about/deprecation.html

https://oval.mitre.org/language/
https://oval.mitre.org/language/about/revision_process.html
https://oval.mitre.org/language/about/revision_process.html
https://oval.mitre.org/language/about/versioning.html
http://oval.mitre.org/language/about/deprecation.html

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

138

Copyright © 2012, The MITRE Corporation. All rights reserved.

Appendix D - Regular Expression Support
The OVAL Language supports a common subset of the regular expression character classes, operations,

expressions, and other lexical tokens defined within Perl 5's regular expression specification. This

common subset was identified through a survey of several regular expression libraries in an effort to

ensure that the regular expression elements supported by OVAL will be compatible with a wide variety

of regular expression libraries. A listing of the surveyed regular expression libraries is provided later in

this document.

Supported Regular Expression Syntax

Perl regular expression modifiers (m, i, s, x) are not supported. These modifiers should be considered to

always be 'OFF' unless specifically permitted by documentation on an OVAL Language construct.

Character matching assumes a Unicode character set. Note that no syntax is supplied for specifying code

points in hex; actual Unicode characters must be used instead.

The following regular expression elements are specifically identified as supported in the OVAL Language.

For more detailed definitions of the regular expression elements listed below, refer to their descriptions

in the Perl 5.004 Regular Expression documentation. A copy of this documentation has been preserved

for reference purposes [10]. Regular expression elements that are not listed below should be avoided as

they are likely to be incompatible or have different meanings with commonly used regular expression

libraries.

Metacharacters
\ Quote the next metacharacter

^ Match the beginning of the line

. Match any character (except newline)

$ Match the end of the line (or before newline at the end)

| Alternation

() Grouping

[] Character class

Greedy Quantifiers
* Match 0 or more times

+ Match 1 or more times

? Match 1 or 0 times

{n} Match exactly n times

{n,} Match at least n times

{n,m} Match at least n but not more than m times

Reluctant Quantifiers
*? Match 0 or more times

+? Match 1 or more times

?? Match 0 or 1 time

{n}? Match exactly n times

{n,}? Match at least n times

{n,m}? Match at least n but not more than m times

Escape Sequences

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

139

Copyright © 2012, The MITRE Corporation. All rights reserved.

\t tab (HT, TAB)

\n newline (LF, NL)

\r return (CR)

\f form feed (FF)

\033 octal char (think of a PDP-11)

\x1B hex char

\c[control char

Character Classes
\w Match a "word" character (alphanumeric plus "_")

\W Match a non-word character

\s Match a whitespace character

\S Match a non-whitespace character

\d Match a digit character

\D Match a non-digit character

Zero Width Assertions
\b Match a word boundary

\B Match a non-(word boundary)

Extensions
(?:regexp) - Group without capture

(?=regexp) - Zero-width positive lookahead assertion

(?!regexp) - Zero-width negative lookahead assertion

Version 8 Regular Expressions
[chars] - Match any of the specified characters

[^chars] - Match anything that is not one of the specified characters

[a-b] - Match any character in the range between "a" and "b", inclusive

a|b - Alternation; match either the left side of the "|" or the right

side

\n - When 'n' is a single digit: the nth capturing group matched.

Appendix E – Normative References
 [1] W3C Recommendation for Hex-Encoded Binary Data
http://www.w3.org/TR/xmlSchema-2/#hexBinary

[2] W3C Recommendation for Boolean Data
http://www.w3.org/TR/xmlSchema-2/#boolean

[3] W3C Recommendation for Float Data
http://www.w3.org/TR/xmlSchema-2/#float

[4] W3C Recommendation for Integer Data
http://www.w3.org/TR/xmlSchema-2/#integer

[5] RFC 4291 - IP Version 6 Addressing Architecture
http://www.ietf.org/rfc/rfc4291.txt

http://www.w3.org/TR/xmlschema-2/#hexBinary
http://www.w3.org/TR/xmlschema-2/#boolean
http://www.w3.org/TR/xmlschema-2/#float
http://www.w3.org/TR/xmlschema-2/#integer
http://www.ietf.org/rfc/rfc4291.txt

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

140

Copyright © 2012, The MITRE Corporation. All rights reserved.

[6] W3C Recommendation for String Data
http://www.w3.org/TR/xmlSchema-2/#string

[7] IEEE Std 802-2001 – IEEE Standard for Local and Metropolitan Area Networks: Overview and
Architecture
http://standards.ieee.org/getieee802/download/802-2001.pdf

[8] Lexicographic Equality
http://www.gnu.org/software/guile/manual/html_node/String-Comparison.html

[9] Perl Compatible Regular Expression Support in OVAL
http://oval.mitre.org/language/about/re_support_5.6.html

[10] Perl 5.004 Regular Expressions
http://oval.mitre.org/language/about/perlre.html

[13] W3C Recommendation for Double Data
http://www.w3.org/TR/xmlschema-2/#double

[14] W3C Recommendation for URI Data
http://www.w3.org/TR/xmlschema-2/#anyURI

[15] W3C Recommendation for unsigned int Data
http://www.w3.org/TR/xmlschema-2/#unsignedInt

[16] RFC 2119 – Key words for use in RFCs to Indicate Requirement Levels
http://www.ietf.org/rfc/rfc2119.txt

[17] Cisco iOS Reference Manual
http://www.cisco.com/en/US/products/ps6350/products_white_paper09186a0080b1351e.shtml

[18] RFC 4632 - Classless Inter-domain Routing (CIDR)
http://tools.ietf.org/html/rfc4632

[19] RFC 791 – IPv4 Protocol Specification
http://tools.ietf.org/html/rfc791

[20] Microsoft Windows File Time Format
http://msdn.microsoft.com/en-us/library/ms724290(v=vs.85).aspx

[21] RFC 4291
http://tools.ietf.org/html/rfc4291

Appendix F - Change Log
Version 5.10.1 Revision 1 – January 20, 2012

http://www.w3.org/TR/xmlschema-2/#string
http://standards.ieee.org/getieee802/download/802-2001.pdf
http://www.gnu.org/software/guile/manual/html_node/String-Comparison.html
http://oval.mitre.org/language/about/re_support_5.6.html
http://oval.mitre.org/language/about/perlre.html
http://www.w3.org/TR/xmlschema-2/#double
http://www.w3.org/TR/xmlschema-2/#anyURI
http://www.w3.org/TR/xmlschema-2/#unsignedInt
http://www.ietf.org/rfc/rfc2119.txt
http://www.cisco.com/en/US/products/ps6350/products_white_paper09186a0080b1351e.shtml
http://tools.ietf.org/html/rfc4632
http://tools.ietf.org/html/rfc791
http://msdn.microsoft.com/en-us/library/ms724290(v=vs.85).aspx
http://tools.ietf.org/html/rfc4291

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

141

Copyright © 2012, The MITRE Corporation. All rights reserved.

 Added documentation to explicitly state that an empty string value is allowed for entity types where
it was previously implied because the only restriction on the value is that it is a string. (Section
4.3.53-60, 4.3.65-76, 4.5.15-22, and 4.5.25-28)

 Added documentation explicitly stating that an empty string value MUST be used when referencing
an OVAL Variable from an OVAL Object Entity, Object Field Entity, State Entity, or State Field Entity
and that an empty string value SHOULD be used when a status other than 'exists' is specified on an
OVAL Item Entity or Item Field Entity. (Section 4.3.51, 4.3.62, 4.3.63, 4.3.78, 4.5.13, and 4.5.23)

 Updated the text regarding the OVAL Language Versioning Policy to reflect the change to a three-
component version identifier. (Appendix B – OVAL Language Versioning Policy).

 Defined what an OVAL Item is. (Appendix G – Terms)

Version 5.10 Revision 1 – September 14, 2011

 Published initial revision of the version 5.10 specification.

Appendix G - Terms and Acronyms

Terms
OVAL Behavior – An action that can further specify the set of OVAL Items that matches an OVAL Object.

OVAL Test – An OVAL Test is the standardized representation of an assertion about the state of a

system.

OVAL Object – An OVAL Object is a collection of OVAL Object Entities that can uniquely identify a single

OVAL Item on the system.

OVAL Item – An OVAL Item is a single piece of collected system state information.

OVAL Component – An OVAL Construct that is specified in the oval-def:ComponentGroup.

OVAL Function – An OVAL Function is a capability used in OVAL Variables to manipulate a variable’s

value.

OVAL Variable – An OVAL Variable represents a collection of values that allow for dynamic substitutions

and reuse of system state information.

OVAL Object Entity – An OVAL Object Entity is a standardized representation for specifying a single

piece of system state information.

OVAL State Entity – An OVAL State Entity is a standardized representation for checking a single piece of

system state information.

OVAL Item Entity – An OVAL Item Entity is a standardized representation for a single piece of system

state information.

 The OVAL® Language Specification: Version 5.10.1 Revision 1

Date: 01-20-2012

142

Copyright © 2012, The MITRE Corporation. All rights reserved.

OVAL-capable product – Any product that implements one or more OVAL Adoption Capabilities as

defined in the OVAL Adoption Program.

OVAL Adoption Program – An on-going effort to educate vendors on best practices regarding the use

and implementation OVAL, to provide vendors with an opportunity to make formal self-assertions about

how their products utilize OVAL, and to help MITRE gain deeper insights into how OVAL is or could be

utilized so that the standard can continue to evolve as needed by the community.

OVAL Adoption Capability – A specific function or functions of a product, service, or repository that

implements some defined aspect of the OVAL Language. The following OVAL Adoption Capabilities are

currently defined as follows:

 Authoring Tool – A product that aids in the process of creating new OVAL files (including

products that consolidate existing definitions into a single file).

 Definition Evaluator – A product that uses an OVAL Definition to guide evaluation and produces

OVAL Results (full results) as output.

 Definition Repository – A repository of OVAL Definitions made available to the community (free

or pay).

 Results Consumer – A product that accepts OVAL Results as input and either displays those

results to the user, or uses the results to perform some action.

 System Characteristics Producer – A product that generates a valid OVAL System Characteristics

file based on the details of a system.

Acronyms
CCE Common Configuration Enumeration
CPE Common Platform Enumeration
CVE Common Vulnerabilities and Exposures
DHS Department of Homeland Security
DNS Domain Name System
IP Internet Protocol
MAC Media Access Control
NAC Network Access Control
NIST National Institute of Standards and Technology
NSA National Security Agency
OVAL Open Vulnerability and Assessment Language
SIM Security Information Management
UML Unified Modeling Language
URI Uniform Resource Identifier
URN Uniform Resource Name
W3C World Wide Web Consortium
XML eXtensible Markup Language

