

[Type the company name]

Security Automation
Developer Days –
OVAL Discussion
 June 8 – 12, 2009

Page | 2

Introduction
The fourth OVAL Developer Days was held in conjunction with the first-ever Security Automation

Developer Days from June 8 - 12, 2009 at The MITRE Corporation in Bedford, MA. The purpose of this

event was to discuss, in technical detail, some of the more difficult issues facing Version 5 of the OVAL

Language, and to explore new use cases for OVAL. By bringing together the lead proponents within the

OVAL Community, the hope was to derive solutions that would benefit all parties, and continue the

community-led development of the language. What follows is a detailed summary of the discussions

from the event.

In addition to a summary of the discussions, a list of action items has been recorded at the end of this

document. These items represent topics that were flagged as needing further discussion, or ideas that

need to be further worked through based on the discussions held.

Page | 3

Table of Contents
Introduction .. 2

Attendee List ... 5

Day 1 ... 8

Deprecation Policy Review.. 8

Nominating Language Constructs for Deprecation and Removal ... 8

Requiring Vendor Support for Deprecated Constructs ... 8

Deprecations Occurs with New Releases .. 9

Deprecation Information for Existing Deprecated Items .. 9

Schematron Usage in OVAL .. 9

Requiring Schematron .. 10

Changing Schematron Rules May Break Backwards Compatibility .. 10

Validate the Rules or Follow Their Spirit ... 10

Schematron Validation Requirements .. 10

Conclusion ... 11

Element Name Reconciliation ... 11

Impact of the Proposal .. 11

Benefit of the Proposal ... 11

Proposal Discussion... 12

Conclusion ... 12

Day 2 ... 13

Choice Structure on Objects ... 13

Issue and Proposal Review .. 13

Proposal Discussion... 14

Conclusion ... 14

Supporting N-Tuples in OVAL .. 15

Background ... 15

Current WMI State .. 16

Proposal One – ‘record’ Datatype ... 16

Proposal Two – ‘resultset’ Entity .. 17

Proposal Three – Sequential Result Entities ... 17

Page | 4

Discussion .. 18

Conclusion ... 19

Pattern Match on Enumerations .. 20

Pattern Match on Enumerations Workaround ... 20

Conclusion ... 21

Tests Reference Multiple States ... 21

Proposal .. 21

Impact of Change .. 22

Benefits of Change .. 22

Conclusion ... 22

Introduce PCRE Based Pattern Matches ... 22

Proposal .. 23

Impact of Change .. 23

Benefits of Change .. 23

Major Arguments for the Proposal ... 23

Major Arguments Against the Proposal .. 24

Conclusion ... 24

OVAL for System Querying .. 24

Major Discussion Points .. 24

Conclusion ... 25

OVAL Repository Considerations .. 25

Conclusion ... 26

Action Items .. 26

Deprecation Policy Clarification .. 26

Supporting Multiple Versions in Parallel .. 26

Defining a Major Version .. 26

OVAL Specification .. 27

OVAL Language Versioning Process & Implementation Review ... 27

Page | 5

Attendee List

Belarc - Richard Defuria

 Gary Newman

 Peter Tracy

BigFix Inc - Ben Hobbs

Booz Allen Hamilton - Michele Ellison

 Conrad Fernandes

 Jason Smith

 Michael Sor

 Colin Troha

CA - Michael Petersen

Calwater - Ramesh Dhullipaua

Center for Internet Security - Blake Frantz

 Steven Piliero

Concurrent Technologies Corporation (CTC) - Kirk Johnson

DISA FSO - Jim Govekar

 David Hoon

 Paul Inverso

 Terry Sherald

 Ricki Vanetesse

DOE - Peter Wettergreen

DSCI - Vladimir Giszpenc

 Leon Sung

EWA-Canada - Dawn Adams

Fortinet - Raymond Chan

G2, Inc - Melanie Cook

 Matthew Kerr

 George Saylor

 Shane Shaffer

 Greg Witte

Gideon Technologies - Kyle Key

 Dragos Prisaca

Guidsoft - Bill Ren

Hewlett-Packard - Pai Peng

 Peter Schmidt

HQDA - Lilliam Cruz

Juniper Networks - Stephen Hanna

Page | 6

Lockheed Martin - Jim Hartig

 Wesley Snell Jr

McAfee, Inc. - Kent Landfield

MIT Lincoln Laboratory - Stephen Boyer

MITRE - Jon Baker

 Steve Boczenowski

 Steve Boyle

 Andrew Buttner

 Maria Casipe

 Michael Chisholm

 Daniel Haynes

 Robert Martin

 Brendan Miles

 Linda Morrison

 Lisa Nordman

 Charles Schmidt

 Larry Shields

 Glenda Turner

 Matthew Wojcik

 Bryan Worrell

 John Wunder

 Margie Zuk

Modulo Security Solutions - Marlon Gaspar

nCircle - Timothy Keanini

 - Natalia Smishko

Netiq/Attachmate - William Graves

NIST - John Banghart

 Paul Cichonski

 Timothy Harrison

 Christopher Johnson

 David Waltermire

NSA - Mike Buckley

 Jason Hage

 Joseph Wolfkiel

OpenPages Inc - Gary Zakon

Prism Networks Pvt. Ltd. - Maneesh Jolly

ProSync Technology Group, LLC - Joe Wulf

Qualys, Inc. - Parminder Singh

Page | 7

Secure Acuiity, LLC - Andrew Bove

Sparta - Jim Ronayne

SPAWAR | SAIC | EMA - Jeff Cockerill

Symantec - Jim Boyles

 Chris Coffin

 Jason Meinhart

Telos - Sudhir Gandhe

 Peter Smith

ThreatGuard, Inc. - Robert Hollis

Tripwire, Inc - Rob Etzel

 Robert Huffman

 Adam Montville

 Claudia McNellis

Unified Compliance Framework - Dorian Cougias

Other Karen Dixon-Brugh

Page | 8

Day 1

Deprecation Policy Review
A review of the new deprecation policy started the OVAL discussions since having a solid understanding

of the policy will help in discussing many of the topics at this year’s event. Prior to April 2009, the

deprecation policy used by the OVAL Language was not adequately defined, and there was no

documentation that described how language constructs could become deprecated, what happened to a

construct once deprecated, or how a deprecated language construct could be identified. The new “OVAL

Language Deprecation Policy” was developed to address these issues and more.

The creation of the deprecation policy was motivated by the needs of the OVAL Community for a

defined process. As OVAL continues to mature, and become more widely adopted, it is important to

ensure that the process by which the language may change is well documented and that reasonable

conventions are in place for the community to support.

Several key points of the new policy are outlined below:

 All OVAL Language constructs must be deprecated before being removed.

 The duration of deprecation will be in terms of releases.

 Language constructs will remain deprecated for at least one release.

 Deprecated constructs will be marked with machine readable indicators.

 Prior to any release, candidates for deprecation will be announced and discussed

 Prior to any release, deprecated constructs will be discussed on a case by case basis for removal.

 There is no requirement that a deprecated construct be removed from the language after any

number of releases.

Following the overview of the deprecation policy, several items were discussed and clarified. These

discussion topics are summarized below.

Nominating Language Constructs for Deprecation and Removal

The question of how a given language construct is nominated for deprecation, and how a deprecated

item is later nominated for removal, was raised. Under this policy, the OVAL Moderator will work

towards a consensus within the community before any construct is deprecated, or removed, from the

language. It was clarified that there is no requirement to remove a construct that has been deprecated.

However, it is undesirable to have the language become completely bloated with deprecated constructs.

A balance between the desire to support deprecated constructs for long periods of time, and the desire

to allow the language to evolve free from the burden of carrying year’s worth of deprecated constructs,

needs to be achieved.

Requiring Vendor Support for Deprecated Constructs

Next, the issue of requiring support for deprecated constructs was raised. Currently, there are

numerous tests and other language constructs that have been deprecated. Should the vendors be

required to support all of these deprecated constructs?

http://oval.mitre.org/language/about/deprecation.html
http://oval.mitre.org/language/about/deprecation.html

Page | 9

Historically, deprecated constructs have been considered part of the OVAL Language and therefore

considered to be required for a vendor to implement. Products still need to support deprecated

constructs to ensure that content, which utilizes deprecated constructs, will be properly supported.

Content authors need to be aware of deprecated constructs and avoid using them. Vendors that are

implementing support for OVAL must also support deprecated constructs.

With the introduction of machine readable deprecation flags, it is now much easier for users of OVAL to

make informed decisions about deprecated constructs.

Deprecations Occurs with New Releases

The question of when a language construct can be deprecated was brought up. Basically, the group

wanted to better understand when an item could be deprecated?

A language construct may be deprecated only with a release of the OVAL Language. Constructs will not

be deprecated without a new release of the OVAL Language. Similarly, deprecated constructs may only

be removed with a new release and they cannot be removed at any other time.

Deprecation Information for Existing Deprecated Items

Given that this deprecation policy was published in April, and that there has not been a release of the

OVAL Language since the fall, will this new deprecation information be added to the existing deprecated

constructs?

The most significant change of Draft 1 of Version 5.6 was the addition of deprecation information to all

of the existing language constructs that have been deprecated.

Schematron Usage in OVAL
Schematron has been used in OVAL since Version 5.0. Compliance with the Schematron rules has been

considered optional since its introduction. Schematron is used in conjunction with XML Schema to

express data validation constraints that XML Schema alone cannot express. Schematron leverages XPath

expressions to define constraints and relationships within the OVAL Language. Schematron can report

both warnings and errors during validation.

At this point, Schematron validation can be prohibitively slow. With large XML documents, Schematron

validation often takes several minutes. This has been a large factor in considering the Schematron rules

to be optional.

Currently, Schematron is optional for all use cases. It is left up to organizations to determine how, or if,

they will support Schematron. The OVAL Repository currently requires all submissions to comply with

the Schematron rules because it will help ensure that the best content is available in the repository.

This discussion is intended to serve as an opportunity to consider how OVAL should use Schematron

moving forward.

Page | 10

Requiring Schematron

The discussion was started by considering the implications of requiring Schematron validation. It was

acknowledged that Schematron validation may be more important when producing content than when

consuming content. For vendors that consume content, it is probably less important that all imported

content is validated against the Schematron rules with the assumption that the content author has

already done this validation, and that the tool follows the spirit of the Schematron rules.

It was agreed that moving forward it is important for all published content to comply with the

Schematron Rules. This will ensure that high-quality content is available as well as place the burden of

content validation largely on the content producer rather than each and every downstream consumer of

that content.

Changing Schematron Rules May Break Backwards Compatibility

Currently, Schematron rules are created and modified with each version of the OVAL Language. These

changes are typically done to add additional restrictions to the valid structure of OVAL definition

documents. This flexibility with Schematron rules helps to ensure that increasingly higher-quality

content is produced. However, this maybe concerning to some vendors as it will result in documents

that were considered valid in one minor version of the OVAL Language to become invalid in a

subsequent minor version of the language.

In general, it was agreed that the ability to add new data validation rules through Schematron, as the

OVAL Language matures, is desirable. As long as the changes coincide with OVAL Language releases, the

rules should continue to be matured over time.

Validate the Rules or Follow Their Spirit

The discussion shifted to validation and whether or not tools should be required to actually evaluate the

Schematron rules, or if the requirement should be that the tools must follow the intent of the rules.

Given that there is a strong desire not to force implementations on the vendors, requiring all the

vendors to specifically support Schematron may not be the right approach.

The consensus was that it is important to follow the spirit of the Schematron rules. It does not matter if

content producers and consumers actually utilize the Schematron rules. The Schematron rules are

simply an expression of requirements for OVAL content. A content producer or consumer should be free

to use the rules through Schematron or to review them, understand them, and ensure that the rules are

followed.

Schematron Validation Requirements

From a product validation standpoint, it is important that a content consumer can report errors in any

content that is being imported. However, it is not required for tools to do this all the time, and it is not

required that an XML Schema or Schematron rules are used. The intent of the rules must simply be

verified.

Page | 11

Conclusion

The consensus was that for OVAL, compliant content should be considered to be any content that

complies with the XML Schema and the requirements expressed in Schematron. With this agreement,

the discussion was then summarized as follows:

 Official content must be compliant with the XML Schema and Schematron rules.

 Any output from a tool must be compliant with the XML Schema and Schematron rules.

 Any tool must be able to detect noncompliance with the XML Schema and Schematron rules.

Moving forward these items will be captured in the OVAL and SCAP Validation programs. The OVAL

documentation will be updated to reflect the requirement that states compliant content must satisfy

the XML Schema and Schematron statements.

In order to ensure that the highest quality OVAL content is available, Schematron rules will continue to

be allowed to become increasingly stringent with each release of the OVAL Language.

Element Name Reconciliation
In naming and managing OVAL Language constructs, the following guidelines have been used:

 Make element names as intuitive as possible.

 Reduce schema bloat when possible.

 Utilize consistent naming patterns.

As the OVAL Language evolves, these guidelines begin to contradict each other. For example, if a typo is

found in an element name that makes the element slightly less intuitive, but, fixing the typo in a new

release will add to schema bloat since the misspelled element cannot be removed. As another example,

when creating a new test, it may be possible to utilize an existing state. In this case, reusing an existing

state will reduce schema bloat, but it will also reduce readability. Due to these inherent contradictions,

the naming pattern of a test aligning with object, state, and item names has broken down and element

names have diverged.

This discussion focused around a proposal to bring all test, object, state, and item names into alignment.

Along with the effort to realign the element names, a convention would be established that all names

will align. This convention could be automated to ensure that element names do not diverge again.

Impact of the Proposal

If accepted, this proposal would introduce new tests, objects, states, and items where ever there was a

misalignment of elements names. In the process of renaming elements, any incorrectly-named elements

would be deprecated. This change would not invalidate any existing content, but it would add schema

bloat.

Benefit of the Proposal

If accepted, the proposal would ensure that a constant naming pattern is followed for all future changes.

Establishing a constant naming pattern will simplify some implementations since the relationship

Page | 12

between an item in the system characteristics schema will always align in name prefix with the

corresponding test, object, and state in the OVAL definitions schema. The proposal would also begin the

process of removing all misnamed elements by deprecating them according to the deprecation policy.

Proposal Discussion

When considering a change to OVAL, the development burden for making a change should be minimized

when possible. People, when given proper documentation, can learn to overcome changes and

inconsistencies. There has been concern about the large size of XML documents and thought should be

given to making changes to the OVAL Language to reduce instance document bloat.

As the discussion progressed, two different conventions were considered. The first was the proposed

convention of ensuring that all element names align regardless of potential schema bloat. The second

convention was to lean in favor of reducing schema bloat and reusing elements whenever possible. This

second convention would suggest that element names do not need to be maintained to always align,

but, when originally created, the names should align. Then, after being created, the names should be

allowed to diverge if the result of the divergence will be to reduce schema bloat.

During the course of the discussion, it was pointed out that there is no documented or machine-

readable mapping between tests, objects, states, and the corresponding item in the system

characteristics schema. It was agreed that this is something that should be documented, and clarified,

with the next release to ensure that there is no ambiguity in this relationship. Currently, the mapping is

assumed to be based on an element name prefix. Encoding the mapping in element name prefixes may

lead to trouble down the road.

Concerns about the way in which OVAL Language schemas use namespaces to differentiate versions

were raised. It was suggested that some of the challenges of managing the language over time might be

easier to address if the schema namespace included both the major and minor version of the language.

Conclusion

It was concluded that leaving typos in the language is not a good idea and that any of the naming

inconsistencies that are due to typos should be addressed.

Keeping the mapping between items, tests, objects, and states as implicitly defined, is not desirable. This

is something that should be corrected, and an explicit mapping should be created.

At this time, aligning the names of tests, objects, states, and items is not worth the implementation

effort. In the future, perhaps with a major revision, element names should be brought into alignment.

As long as an explicit mapping between tests, objects, states, and items is provided, an effort should be

made to reduce schema bloat and reuse existing elements when possible in the future.

Page | 13

Day 2

Choice Structure on Objects
At OVAL Developer Days 2008, the notion of introducing a choice structure into objects in the OVAL

Language was discussed and agreed to. Since then, a proposal has been made for how to actually

implement this choice structure. What remains to be discussed is whether or not this new structure can

be added into OVAL Version 5.6, or if this structure introduces too large of a change for a minor revision.

Issue and Proposal Review

As background for discussion, a review of the issue and the standing implementation proposal was held.

That proposal can be found here: http://oval.mitre.org/community/archives.html#nabble-td1485589.

In the course of reviewing the issue, the following example was used:

<file_object id="oval:sample:obj:1" version="1" xmlns=“…">

 <path>c:\windows</path>

 <filename>foo.exe</filename>

</file_object>

Here the current file_object is presented. Currently, a file can only be identified by a combination of the

path and filename element as seen above. It is not possible to have a single string representing a

complete file path today. This becomes an issue when the complete file path is not available in any

other form. On Windows systems, the registry frequently holds complete paths to files that need to be

examined. It is also common to store complete paths to binaries in configuration files on other platforms

as well. In OVAL, these other sources of information are often queried to determine the location of a file

that is then examined with a file test or file permission test. In the current version of OVAL, there is no

way to support these subsequent tests because files can only be identified by a separate path and

filename.

The proposed solution to this issue would allow the following two methods for representing a

file_object in OVAL:

<file_object id="oval:sample:obj:1" version="1" xmlns=“…">

 <path>c:\windows</path>
 <filename>foo.exe</filename>
</file_object>

OR

<file_object id="oval:sample:obj:2" version="1" xmlns=“…">
 <filepath>c:\windows\foo.exe</filepath>

</file_object>

Basically, a file_object could be expressed as it is today with the path and separate filename, or with a

combined filepath element.

The XML Schema for a file_object currently looks like this:

http://oval.mitre.org/community/archives.html#nabble-td1485589

Page | 14

<xsd:sequence>
 <xsd:element name="behaviors" type="win-def:FileBehaviors" minOccurs="0"/>

 <xsd:element name="path" type="oval-def:EntityObjectStringType“/>
 <xsd:element name="filename" type="oval-def:EntityObjectStringType" nillable="true"/>
</xsd:sequence>

The proposed XML Schema would look like this:

<xsd:sequence>
 <xsd:element name="behaviors" type="win-def:FileBehaviors" minOccurs="0"/>
 <xsd:choice>
 <xsd:sequence>
 <xsd:element name="path" type="oval-def:EntityObjectStringType"/>
 <xsd:element name="filename" type="oval-def:EntityObjectStringType" nillable="true"/>
 </xsd:sequence>
 <xsd:sequence>
 <xsd:element name="filepath" type="oval-def:EntityObjectStringType"/>
 </xsd:sequence>
 </xsd:choice>
</xsd:sequence>

The important change to notice is that an xsd:choice has been introduced. The xsd:choice would allow

for two different sequences of elements. Introducing this xsd:choice structure would be a distinct

change from the very consistent pattern in OVAL of only having one possible sequence of child elements

for any given object or state.

It is also important to note that the example above is based on a file_object and that there are several

other places in OVAL that could benefit from this same xsd:choice structure. If it is agreed that this

choice structure on objects should be introduced, a similar pattern will be implemented to support

choice structures on the other objects too.

As previously stated, the notion of introducing a choice structure was agreed to at OVAL Developer Days

2008. This is now being considered for inclusion in Version 5.6 because it does not break backwards

compatibility, and addresses a known deficiency that is preventing certain types of tests from being

developed.

Proposal Discussion

Looking at how tests have evolved in OVAL to date, the lack of support for a choice structure has been

worked around by simply creating new tests. This can be seen in the user_test and the user_sid_test.

Ideally, a choice structure could have been used there to allow the original user_test to support

identifying a user by username or by SID. This workaround caused the OVAL Community to learn these

two different methods for looking up a user. It would have been cleaner, and resulted in less schema

bloat, if a choice structure had been introduced instead of a new test.

In surveying the vendors in attendance, it was agreed that this addition would not be a significant

burden to support. In fact, the benefits of adding this choice structure far outweigh the implementation

cost of supporting the structure.

Conclusion

A proposal will be created and distributed to the oval-developer-list for adding the proposed choice

structure into the current file_object. A list of other objects that would also benefit from this structure

Page | 15

will be included in the proposal, and assuming agreement over the oval-developer-list, those changes

can also be made in Version 5.6.

Supporting N-Tuples in OVAL
The OVAL Language currently supports several data repositories that may return query results as n-

tuples. However, it does not currently provide a mechanism for representing these n-tuples, or for

checking the state of a result set that contains n-tuples. OVAL has solid support for result sets with

single value results and arrays of single values, but leaves something to be desired when working with

WMI, SQL, and XML where n-tuples common.

This discussion focused on reviewing the issue and considering three different proposals for addressing

the issue. While the examples and the discussion was in the context of WMI, the understanding was that

the issue is common to several data stores that the OVAL Language currently supports and that a

common solution based on the proposals will be developed. Given the increasing demand for adding

this capability to OVAL Language, the group considered whether or not this feature could be added to

the OVAL Language in Version 5.6.

Background

The two examples below highlight the current OVAL capability, and the desired capability. The first

example is a WQL used to query WMI that selects the ‘ScreenSaverTimeOut’ field from each

‘Win32_Desktop’ class in WMI.

SELECT ScreenSaverTimeOut FROM Win32_Desktop;

The second example selects the ‘Name’ and ‘ScreenSaverTimeOut’ fields from each ‘Win32_Desktop’

class in WMI. This example will select 0 – n pairs of results where it is important to maintain the

relationship between the ‘Name’ and ‘ScreenSaverTimeOut’ fields.

SELECT Name, ScreenSaverTimeOut FROM Win32_Desktop;

Using the second example, it is possible to know what a specific user’s ‘ScreenSaverTimeOut’ is set to.

With the first example, it is only possible to examine all the ‘ScreenSaverTimeOut’values on the system,

and not individual user’s values.

It is also important to note that this capability has not been supported in the OVAL Language because

there has never been a solution that did not introduce an entirely new structure for developers to

implement and content authors to learn. The group was reminded that a primary goal in the

development of Version 5.0 of the OVAL Language was consistency in order to ensure that once a single

test in OVAL was understood all other tests would be easily understood. This was also done to reduce

the implementation burden for developers.

Page | 16

Current WMI State

As background, the current win-def:wmi_state and win-sc:wmi_item were reviewed before any

proposals were presented. Below is an example of a win-def:wmi_state that highlights the result

element as it is in Version 5.5.

<wmi_state id="oval:sample:ste:1" version="1" xmlns=“…">

 <result datatype="string" operation="equals" >user2</result>

</wmi_state>

Below is an example of the win-sc:wmi_item as it is in Version 5.5.

<wmi_item id="1" xmlns=“…">

 <namespace>root\CIMV2</namespace>

 <wql>SELECT Name FROM Win32_Desktop</wql>

 <result>user2</result>
 <result>user1</result>

</wmi_item>

Proposal One – ‘record’ Datatype

The first proposal considered introduces a new ‘record’ datatype that would allow an entity to have

child ‘field’ elements. The proposed changes to the win-def:wmi_state are shown below:

SELECT Name, ScreenSaverTimeOut FROM Win32_Desktop;

<wmi_state id="oval:sample:ste:2" operator="AND" version="1" xmlns=“…“>
 <result datatype="record" operation="equals" entity_check="all">
 <field name= "Name" datatype="string" operation="equals">user</field>
 <field name= "ScreenSaverTimeOut" datatype="int"
 operation="less than">600</field>
 </result>
</wmi_state>

Under this proposal, the current ‘result’ element would remain unchanged and a new ‘record’ datatype

would be introduced. This datatype would allow mixed content and define a ‘field’ element. Each ‘field’

element would have a unique ‘name’ attribute that would distinguish one ‘field’ from another. Field

elements would have their own datatype and operation to allow for different datatypes and operations

to be specified for each ‘field’ as seen in the example above. Field elements would also support

‘var_ref’, ‘var_check’, and ‘entity_check’ attributes in the same way that other standard entities in the

OVAL Language support these attributes.

When considering this proposal there are a few issues that should be weighed:

1. This proposal will keep the result entity closely aligned with other entities.

2. However, close alignment will leave several unneeded and unused attributes on the ‘result’

element. For example, the ‘result’ element would allow for a ‘var_ref’ attribute which would not

really have any meaning.

3. The ‘datatype’ attribute, rather than an element name, is being used to indicate that the

element will have child elements. This is different than most of the other constructs in the OVAL

Language and is not considered good XML Schema practice.

4. Adding in the ‘record’ datatype will change the nature of the result element such that it does

not align with any of the other entities in the OVAL Language.

Page | 17

Proposal Two – ‘resultset’ Entity

The second proposal considered introduces a new ‘resultset’ element that would allow an entity to have

child ‘field’ elements. The proposed changes to the win-def:wmi_state are shown below:

SELECT Name, ScreenSaverTimeOut FROM Win32_Desktop;

<wmi_state id="oval:sample:ste:2" operator="AND" version="1" xmlns=“…“>
 <result datatype="string" operation=“equals" >user2</result>
 <resultset entity_check="all">
 <field name= "Name" datatype="string" operation="equals">user2</field>
 <field name= "ScreenSaverTimeOut" datatype="int"
 operation="less than">600</field>
 </resultset>
</wmi_state>

Under this proposal, the current result element would remain unchanged and a new ‘resultset’ element

would be introduced. This element defines a child ‘field’ element and supports the ‘entity_check’

attribute. The ‘entity_check’ attribute would allow for assertions to be made about multiple ‘resultset’

elements. Similar to the first proposal, each ‘field’ element would have a unique ‘name’ attribute that

would distinguish one ‘field’ from another. Field elements would have their own datatype and operation

to allow for different datatypes and operations to be specified for each ‘field’ as seen in the example

above. Field elements would also support ‘var_ref’, ‘var_check’, and ‘entity_check’ attributes in the

same way that other standard entities in the OVAL Language support these attributes.

When considering this proposal there are a few issues that should be weighed:

1. The ‘resultset’ entity is unlike any other entity in the OVAL Language and diverges from previous

efforts to ensure that all entities are similar in nature.

2. The proposal would result in the creation of an oval-def: ResultSetType that would be reused in

other logical locations in the OVAL Language.

3. This new element would have only the needed attributes which would simplify it, but also make

it even more different than other elements in the OVAL Language.

Proposal Three – Sequential Result Entities

The third proposal considered introduces several new ‘result’ elements where each new element is

sequentially named. The proposed changes to the win-def:wmi_state are shown below:

SELECT Name, ScreenSaverTimeOut FROM Win32_Desktop;

<wmi_state id="oval:sample:ste:2" operator="AND" version="1" xmlns=“…“>
 <result datatype="string" operation=“equals" >user2</result>
 <result_1 datatype="string" operation="equals" >user2</result>
 <result_2 datatype="int" operation="equals" >333</result>
</wmi_state>

Under this proposal, the current ‘result’ element would remain unchanged and several new ‘result’

elements would be introduced. Each of these new ‘result’ elements would be just like the existing

element except that they would allow for tuples with a few more elements to be represented.

When considering this proposal, there are a few issues that should be weighed:

Page | 18

1. This solution will support tuples that are limited in size by the number of sequentially named

‘result’ elements. This will address some cases, but there will always be a request for one more

‘result’ element.

2. This proposal does not allow the complete set of elements in the tuple to be treated as a unit.

The other proposals consider the complete tuple to be the unit for comparisons.

3. This is not a complete solution, but merely a workaround that remains consistent with the other

structures in the OVAL Language.

Discussion

In the follow-up discussion for proposal two, the suggestion of using the choice structure that was

discussed in the previous session was made. A choice structure here would allow a state to have either a

traditional ‘result’ element or the new proposed element. This would ensure that this new element

would not be used with the existing ‘result’ element.

It was pointed out that the ‘field’ elements from proposal one and two need to also support unnamed

fields. For example, a user might want to use ‘SELECT * FROM Some_Table’. This would select all of the

fields in that table without naming them. The first two proposals must support this to be effective. The

suggestion was made allow the children to be either ‘named_field’ elements or ‘anonymous_field’

elements where the anonymous version would have a sequence attribute to uniquely identify one field

and the named version would have a ‘name’ attribute to uniquely identify one field.

In proposal two, it would not make sense to use both the proposed ‘resultset’ element and the existing

‘result’ element in the same state. This might be justification for using a choice structure here or at least

using Schematron rules to prevent this.

In proposal one and two, it is important to note that the child ‘field’ elements would all be logically

and’ed together during evaluation. So in the examples for proposals one and two, the evaluation results

from each field are being and’ed together to determine the overall evaluation result for the entity.

It was also pointed out that when possible, Schematron rules should be avoided. The first preference

should be to define language constructs through XML Schema. Then, if all else fails, use Schematron.

This will make the language simpler to follow and avoid some of the challenges of Schematron.

These proposals do not address what the corresponding system characteristics items would look like.

The proposal assumes that the items will have a parallel structure. When the final proposal is made to

the oval-developer-list, an example showing the item in the system characteristics file is needed.

Another option would be to simply overload the existing ‘result’ element by inserting comma separated

values. This would allow for some improvement over the existing capability, but would not allow per

field comparisons with different datatypes and operations.

Page | 19

RDF may offer some assistance in supporting n-tuples. Perhaps utilizing RDF in this particular structure is

worth exploring. The issue is that this seems like a very large change for OVAL. In the near-term, RDF is

not likely a good solution, but should be considered for a major revision or as a long-term solution.

This discussion is assuming that all of the data returned is tabular. In the future, OVAL may need to

support data that is returned as a graph. In fact, because XML is hierarchical, there may already be a

need to support non-tabular data. How would this proposal support querying XML where node sets are

returned? At the moment, it is not clear how OVAL would support doing further comparisons on XML

data that can be stored in any number of different locations. The solution is not just simple XPath

statements to retrieve single values or n-tuples.

This proposal, and the notion of adding RDF to OVAL, led to the suggestion to allow for a ‘development’

branch, or similar, to run in parallel to the current official branch. This discussion led to a general

consensus in the room that an experimental branch is really needed for this and many other reasons.

Given that this need to support n-tuples is really a new area for the OVAL Language to support, it might

be better to define this as an entirely new construct and not attempt to fit the solution into the existing

entity structure. It may actually be harder for users to learn the new structure if it is not clearly broken

out as a new structure. Given the benefit of this capability, it is well worth the cost to teach new users

how to use it as a new unique construct.

Regarding the third proposal, we should ensure that we develop a good generally-applicable solution.

Simply developing a workaround will not solve the entire problem.

The discussion shifted to whether or not this capability could be introduced in a minor version. One

perspective was that as long as backwards compatibility is maintained it is acceptable to introduce

capabilities like this in a minor release. To others, this seems like a major release type of capability since

there is a fairly high impact on introducing it. It will introduce an entirely new construct to several tests

in the OVAL definitions schema and items in the system characteristics schema.

Conclusion

When the discussion concluded, it was agreed that a case could be made for including this capability in

OVAL Version 5.6, or deciding that this capability could only be introduced with a major revision. The

consensus was that this capability should be further discussed and explored before adding it to Version

5.6. A discussion will be started on the oval-developer-list to continue the dialogue on this topic.

Regarding the merits of the specific proposals, there was strong support for proposal two. Since the

structure is really representing an entirely new concept in the OVAL Language, it is at least okay to be

inconsistent, and perhaps should be inconsistent, with the other entities. Also, there was no desire to

develop a partial solution to this issue.

During the course of the discussion, it was generally agreed to that OVAL does not currently allow the

community to easily explore new solutions. There is a strong desire to setup a ‘development’ branch, or

Page | 20

similar, to allow new ideas to be explored and vetted before they are potentially integrated into the

official OVAL Language. Most participants agreed that this ‘development’ branch would be a great place

to explore solutions to this issue.

Pattern Match on Enumerations
The ability to use the pattern match operation on enumerations has been an open issue for the OVAL

Language since Version 5.0 was released. Enumerations were added to the OVAL Language in order to

restrict constructs to specific values, ensure tool interoperability, and increase content readability. As a

result, the pattern match operation could not be used on constructs that used enumerations. The

deficiency caused by this restriction can be easily demonstrated with the following example.

<auditeventpolicy_state id="oval:sample:ste:1" version="1" xmlns="...">

 <account_logon datatype="string" operation="pattern match">

 AUDIT_(SUCCESS|SUCCESS_FAILURE)

 </account_logon>

</auditeventpolicy_state>

Currently, this is not a valid auditeventpolicy_state because the string

‘AUDIT_(SUCCESS|SUCCESS_FAILURE)’ is not included in the enumeration that restricts that allowed

values of the account_logon entity. In order to correctly perform this check, two tests would have to be

created that check for the value AUDIT_SUCCESS and AUDIT_SUCCESS_FAILURE, and the two tests

would have to be embedded in a criteria construct which uses the OR operator. This is much more

verbose, and most likely doesn’t align with the content developer’s thought process.

In Version 5.3 of the OVAL Language, there were Schematron rules that restricted the operations

permitted on enumerations to just ‘equals’ or ‘not equal’ as the ‘pattern match’ operation on a finite set

of strings did not make sense. Additionally, allowing the ‘pattern match’ operation undermines the

reasoning for having enumerations to begin with. However, in Version 5.4 of the OVAL Language, these

rules were accidentally dropped making a workaround possible.

Pattern Match on Enumerations Workaround

The workaround can be implemented by using a variable reference for an entity’s value and then

specifying the regular expression in that variable. This work around is demonstrated below.

<auditeventpolicy_state id="oval:sample:ste:1" version="1" xmlns="...">

 <account_logon datatype="string" operation="pattern match"var_ref="oval:sample:var:1"/>

</auditeventpolicy_state>

<constant_variable id="oval:sample:var:1" version="1" datatype="string" ...>

 <value>AUDIT_(SUCCESS|SUCCESS_FAILURE)</value>

</constant_variable>

Page | 21

In this discussion, the decision to be made is should this workaround be embraced and accepted in the

OVAL Language, or should the rules that prohibit this workaround be put back in the OVAL Language for

Version 5.6.

If the rules are dropped, and not put back in the language, it would allow the opportunity to close a long

outstanding issue. However, this could also be very dangerous because it would allow content

developers to place whatever values that they wanted in making it much more difficult to ensure that

content is valid, and as a result could cause issues with vendor tools.

Conclusion

After some discussion, a consensus was reached that in Version 5.6 of the OVAL Language the rules

should be left out and that the workaround be accepted as part of the language. It was made clear that

the documentation should specify that any regular expression used in the workaround should matched

against the enumerated values already defined in the OVAL Language. It was also recommended that

content developers be encouraged to anchor their regular expressions. Otherwise, unexpected results

with vendor tools could occur.

Tests Reference Multiple States
The capability to have a test reference multiple states has been a topic of discussion for many years and

has been requested by many members of the OVAL Community. The major motivation behind this

capability is that content developers would be given the ability to specify an acceptable range of values

as well as produce content that is much more readable. Additionally, during the 2008 OVAL Developer

Days Conference (Pg. 21), there were discussions regarding whether or not states should be put back

inside tests for Version 6.0 of the OVAL Language. During these discussions, the OVAL Community

expressed that a change of this magnitude which would require all of the existing content to be re-

written was not in the best interest of the OVAL Community, and should not be pursued any further.

However, if members want to reconsider this issue for Version 6.0 of the OVAL Language, the topic can

be discussed in more detail.

Proposal

This proposal would grant content developers the ability to reference multiple states in a single test

allowing for the use or ranges in a clear and succinct manner. A simple example that can easily

demonstrate the value of this capability can be seen below.

<min_passwd_len datatype="int" operation="greater than or equal">8</min_passwd_len>

<min_passwd_len datatype="int" operation=“less than or equal">16</min_passwd_len>

With this new capability, a content developer would be able to make a single test that references one

state that evaluates to true if the min_password_len is greater than or equal to 8 and another state that

evaluates to true if the min_password_len is less than or equal to 16. This would allow an author to

easily write a single test to ensure that the minimum password length was between 8 and 16. Currently,

the method of performing this same check would require the author to create two separate tests, one

http://oval.mitre.org/oval/documents/docs-08/developerdays_minutes.pdf
http://oval.mitre.org/oval/documents/docs-08/developerdays_minutes.pdf

Page | 22

for each allowed state. This is cumbersome, often counter intuitive, and it diminishes the readability of

the OVAL content.

Impact of Change

This change would require the addition of a new attribute ‘state_operation’ on the oval-def:TestType as

well as changing the multiplicity of each test’s state element to unbounded. An example of this change

can be seen below.

<xsd:element name="state" type=“StateRefType" minOccurs="0" maxOccurs="unbounded"/>

The new attribute ‘state_operation’ would be based on the oval-def:OperatorEnumertion datatype

which would allow the operations AND, OR, XOR, and ONE to be performed on the states in order to

logically combine them.

Lastly, these changes would not invalidate any existing content because it allows content developers to

reference multiple states in a single test object instead of just one state object as currently defined. The

new attribute ‘state_operation’ would not break backwards compatibility because it would have a

default value of AND, and if a content developer is referencing only one state, it would impact the

evaluation of the test. It is also important to note that historically test-level attributes have been added

to the OVAL Language in minor revisions. However, the same cannot be said for changing the

multiplicity of an object.

Benefits of Change

The introduction of this proposal into the OVAL Language would allow ranges of values to be specified

for the values of states in OVAL definitions. As a result, it would simplify content authoring because it

would remove the extra criteria, tests, and states necessary to perform this same functionality.

Conclusion

As a result of the discussion, it was determined that extending the multiplicity of states to unbounded as

well as adding a ‘state_operation’ attribute would be beneficial to the OVAL Language because it would

simplify content authoring, increase the readability of OVAL definitions, and allow for ranges of values to

be specified in state objects. It was also decided that this change would be acceptable for Version 5.6,

and that a proposal would be sent out to the oval-developer-list for further discussion by the OVAL

Community.

Introduce PCRE Based Pattern Matches
This topic was originally discussed on the oval-developer-list and at the 2008 OVAL Developer Days

Conference (Pgs. 21-23) which was focused on driving Version 6.0 of the OVAL Language. It came to the

attention of the OVAL Community that the majority of the existing OVAL content was utilizing the PCRE

regular expression syntax even though the POSIX regular expression syntax was defined in the OVAL

Language. As a result of these discussions, it was decided that the change from POSIX to PCRE in the

http://n2.nabble.com/Posix-vs.-PCRE-Regex-td23648ef20093.html#a23648
http://oval.mitre.org/oval/documents/docs-08/developerdays_minutes.pdf
http://oval.mitre.org/oval/documents/docs-08/developerdays_minutes.pdf

Page | 23

Version 6.0 release of the OVAL Language would be beneficial. However, more discussion was needed

to make the final decision.

Proposal

As a result of the discussions mentioned above, a proposal was introduced that would require the

addition of a new operation called ‘pcre pattern match’ in the OperationEnumeration datatype as well

as the deprecation of the operation ‘pattern match’ in the OperationEnumeration datatype. This

proposal favors the addition of a new value in the OperationEnumeration datatype rather than adding

an additional attribute that specifies the regular expression syntax because it follows how things were

previously done with other OVAL Language structures. The major question regarding this proposal was

whether or not the change fit in the OVAL Version 5.6 release.

Impact of Change

The major impact of implementing this proposal is that it would introduce the ‘pcre pattern match’

operation and would deprecate the ‘pattern match’ operation which was specified to use the POSIX

regular expression syntax. Due to the conditions of the OVAL Deprecation Policy, these changes would

not invalidate existing OVAL content in the next release. Additionally, this change would suggest that the

OVAL Language supports both POSIX and PCRE until the POSIX-based ‘pattern match’ operation is

officially removed from the OVAL Language.

Benefits of Change

The primary benefit of making this change is that it would help ensure a standard meaning for all OVAL

content. Currently, content authors are using PCRE syntax instead of POSIX out of habit. Users are

accustomed to PCRE syntax and implementers are supporting PCRE syntax. For the most part, POSIX is

not being used. Creating a ‘pcre pattern match’ operation would allow vendors and users of OVAL to

declare that a given string is a PCRE-based regex and not a POSIX-based regex. This would ensure that all

regular expressions are evaluated in their intended syntax. The change would allow much of the

existing content to be corrected and brought into alignment with the regular expression syntax of OVAL.

Major Arguments for the Proposal

The first major argument that arose during the discussion was that it would be very unrealistic for the

OVAL tool vendors to implement multiple regular expression syntaxes and it would potentially hinder

the adoption of the OVAL Language by new vendors. Another argument for making this change is that

most OVAL compatible tools, and OVAL content, are already using the PCRE regular expression syntax.

Along the same lines, the majority of tool and content developers are already comfortable with the

PCRE regular expression syntax and it is counterproductive to have to train developers to use a different

regular expression syntax. Additionally, most regular expression syntaxes, Python, Java, Visual Basic,

and Perl to name a few model the same syntactical behavior as PCRE. Lastly, OVAL has made it a priority

to promote interoperability and reduce vendor burden in order to further the adoption of the OVAL

Language. The addition of many regular expression syntaxes would increase the burden on the

developers and reduce the potential for interoperability.

Page | 24

Major Arguments Against the Proposal

The overwhelming argument against the proposal is that by specifying a particular regular expression

syntax it would be effectively limiting the capabilities of the OVAL tool and content developers, and

would not necessarily solve every vendor’s needs. Essentially, in the end, it should be up to the

developers to make the decision about which syntax is best for them as this flexibility would help

expand the community. Also, instead of choosing a single regular expression syntax, a subset of all of

the regular expression syntaxes could be used to ensure that every syntax is compatible. The final major

argument against making the switch to the PCRE regular expression syntax is that it does not support

internationalization and it would alienate many communities that may be interested in becoming

involved in the OVAL Community.

Conclusion

The two most notable options that developed out of this discussion are listed below.

1) Add a new value ‘pcre pattern match’ to the OperationEnumeration datatype and deprecate the

value ‘pattern match’ from the OperationEnumeration datatype. The value ‘pattern match’

would then be removed at a later time as specified by the OVAL Language Deprecation Policy.

2) Change the documentation in the OVAL Language to specify the PCRE regular expression syntax

as the syntax of choice rather than the POSIX regular expression syntax.

As a result of the discussion, the group came to a consensus that, regardless of the option selected, the

change should be made in the Version 5.6 release of the OVAL Language, and that these options would

be presented to the OVAL Community on the oval-developer-list for further discussion.

OVAL for System Querying
An emerging use case for the OVAL Language, which has been requested by multiple members of the

OVAL Community, is the ability to obtain data from the system without making an assertion about its

state. Currently, the OVAL Language provides a framework for performing a system inventory with

respect to some pre-defined state whether it be in a compliance, inventory, patch, vulnerability, or

miscellaneous definition. This new use case would allow OVAL content authors to request all of the

items on a particular system using existing OVAL objects. The major questions considered during this

discussion include:

1) Should we support this capability in the OVAL Language?

2) Is there enough support to do the work to implement this capability?

Major Discussion Points

First the issue of whether or not the OVAL Community should embrace the use case for system querying

in the OVAL Language was raised. As a result, the Open Checklist Reporting Language, also known as

OCRL was mentioned. OCRL is an emerging language specification for collecting a system’s state and

generating human-readable reports. This then raised the question of whether or not this capability was

http://ocrl.mitre.org/

Page | 25

needed in the OVAL Language, and if so, is a new specification even necessary? The group decided that,

before attempting to create an entirely new specification, they would like to see if the capability could

be built into the OVAL Language. However, before this use case could be built into OVAL, it was

proposed that a model should be built to define what it means to collect the data from the system, and

how the data should be represented such that it can be understandable by a human. At that point, it

could be determined whether or not this capability is outside the scope of the OVAL Language, and if so,

would be best left to a new specification like OCRL. Next, a concern was raised about the privacy and

security implications of being able to collect information about a particular system. It was then clarified

that system querying would only pertain to authenticated systems meaning that unauthorized users

would be unable to collect information about any particular system. Another concern about

implementing this capability is that you would now be dealing with large sets of data and it would be

advantageous if you could keep a local cache and only retrieve the differences between the cache and

the system. It also might be beneficial to have higher level constructs that allow you to filter the data

sets. This use case could also be useful in assisting interviewers that need to answer OCIL questions.

Lastly, it was mentioned that the OVAL system characteristics file was not the answer to implementing

this use case because it cannot convert the system characteristics data into CCEs, CPEs, or CVEs.

Conclusion

It was the general consensus of the group that they liked the idea of having support for system querying

in the OVAL Language. However, it seems that efforts might be better suited improving OVAL’s ability to

make assertions about machine state, and that it would be great if the OVAL Community could present

some proposals on the oval-developer-list to facilitate additional discussion to decide if it makes sense

to put this capability in OVAL (e.g. does it undermine existing goals of the OVAL Language?), or if it

would make more sense to add an additional specification such as OCRL.

OVAL Repository Considerations
The key considerations for this topic focus on answering the following two questions:

1) Should inventory definitions be required to have a CPE name?

2) Should compliance definitions be required to have CCE IDs?

These questions suggest that if an inventory definition cannot obtain a CPE name or if a compliance

definition cannot obtain a CCE ID their class would be changed to ‘miscellaneous’. That is not to say that

if an inventory definition or compliance definition are candidates for CPEs and CCEs respectively, but

they are unable to immediately obtain these names and identifiers, that they would automatically

become members of the ‘miscellaneous’ class. This notion of putting definitions in a ‘miscellaneous’

class is reserved for definitions that cannot obtain their respective names or identifiers because they do

not actually qualify for them as defined in the corresponding specifications, not because they simply

don’t have the identifiers or names assigned yet. Two examples of definitions that would go into the

‘miscellaneous’ class under this proposal can be seen below.

Page | 26

1) A definition which determines if Microsoft Windows XP SP2 or later is installed is not an

inventory definition

2) If a product XYZ reaches the end of life it is not a vulnerability definition because it is not a

candidate for a CVE ID.

A major discussion point regarding this topic was how would the introduction of a ‘miscellaneous’ class

affect the production and consumption of content in the OVAL Repository. The general consensus was

that it would be useful to make the change and clarify the distinction of what can really be an inventory

or compliance definition. It was also mentioned that it would not drastically affect the production and

consumption of the OVAL Repository content. Another key discussion point was that it would be

beneficial to establish a convention on how to handle compliance definitions and formalize what it

means to be a compliance definition. Lastly, a question was raised as to whether or not the mapping of

definitions belong in OVAL or CPE and CCE where the majority of the work is being done, and whether or

not it makes sense to extend CPE and CCE to define where the definitions should exist. The problem

with this is that all of these specifications CCE, CVE, CPE, OVAL, etc. have grown independently and it

would need to be determined who would be responsible for taking on this task.

Conclusion

By the conclusion of this discussion, there was agreement that it would be beneficial to require

inventory definitions to have CPEs and for compliance definitions to have CCEs as it would make the

OVAL Repository consistent with vulnerability definitions that are required to have CVEs. As a result, it

was decided that this discussion would be continued on the oval-developer-list for further

consideration.

Action Items

Deprecation Policy Clarification
In discussing the deprecation policy, and later OVAL’s use of Schematron rules, it became clear that the

policy needs to be clarified to state that Schematron rules are not subjected to the same policy.

Supporting Multiple Versions in Parallel
A recurring theme in many of the discussions was a strong desire for OVAL to support multiple versions

in parallel. The idea is to allow the Version 5.x line to continue to run and be supported, and also

support a new major revision that will, after time, allow us to drop support for Version 5.6. This idea

needs further consideration.

Defining a Major Version
As the discussion progressed through a number of proposals for possible inclusion in Version 5.6, it

became clear that the notion of a major version of the OVAL Language is not adequately defined. It is

not entirely clear when a change to the language should be considered a candidate for a minor or major

version. The criteria for a major version change in OVAL needs to be defined and documented.

Page | 27

OVAL Specification
There were several requests for an OVAL Language specification to be created. This is something that

has been asked for on several occasions over the years.

OVAL Language Versioning Process & Implementation Review
The initial discussion about the OVAL Language Deprecation Policy brought up many questions about

the way versioning is implemented in the OVAL Language. The OVAL Language versioning methodology

can be found here:

http://oval.mitre.org/language/about/versioning.html

This document describes the versioning methodology including the way in which versions of the

language are differentiated. However, the “Differentiating Language Versions” section needs to be

expanded.

Once this document is updated, a teleconference should be held to discuss potentially changing the

versioning implementation. There continues to be a strong desire to include the major and minor

version in the namespace of all language constructs.

http://oval.mitre.org/language/about/versioning.html

